Question Number 218955 by Spillover last updated on 17/Apr/25 Answered by Spillover last updated on 18/Apr/25 Answered by Spillover last updated on 18/Apr/25 Answered by…
Question Number 218891 by Nicholas666 last updated on 17/Apr/25 $$ \\ $$$$\:\boldsymbol{{suppose}}\:\boldsymbol{{y}}\left(\boldsymbol{{x}}\right)\:=\:\:\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\boldsymbol{{a}}_{\boldsymbol{{n}}} \boldsymbol{{x}}^{\boldsymbol{{n}}} \boldsymbol{{statisfies}}\: \\ $$$$\:\:\:\boldsymbol{{y}}''\boldsymbol{{y}}−\left(\boldsymbol{{y}}'\right)^{\mathrm{2}} =\boldsymbol{{e}}^{\boldsymbol{{y}}} −\mathrm{1}\boldsymbol{{with}}\:\boldsymbol{{y}}\left(\mathrm{0}\right)=\mathrm{0}\:\boldsymbol{{and}}\:\boldsymbol{{y}}'\left(\mathrm{0}\right)=\mathrm{1}.\:\:\:\:\: \\ $$$$\:\:\:\:\boldsymbol{{determin}}\:\boldsymbol{{a}}_{\mathrm{4}} . \\ $$$$…
Question Number 218949 by Spillover last updated on 17/Apr/25 Commented by Spillover last updated on 17/Apr/25 $${ans}=\frac{\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\left.\mathrm{2}\right)}\right.}{\:\sqrt{\mathrm{2}}} \\ $$ Commented by Nicholas666 last updated on…
Question Number 218950 by Spillover last updated on 17/Apr/25 Commented by Spillover last updated on 17/Apr/25 $${ans}=\frac{\mathrm{2}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}\pi \\ $$ Answered by Spillover last updated…
Question Number 218951 by Spillover last updated on 17/Apr/25 Commented by Spillover last updated on 17/Apr/25 $${ans}=\frac{{z}}{\mathrm{sinh}\:{z}} \\ $$ Answered by Spillover last updated on…
Question Number 218879 by Nicholas666 last updated on 16/Apr/25 $$ \\ $$$$\:\:\:\boldsymbol{{Calculate}}\:\boldsymbol{{the}}\:\boldsymbol{{following}}\:\boldsymbol{{integral}};\:\:\:\:\:\: \\ $$$$\:\:\int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} \boldsymbol{{xJ}}_{\mathrm{0}} \left(\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }\right)\boldsymbol{{J}}_{\mathrm{1}} \left(\sqrt{\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}}…
Question Number 218872 by Nicholas666 last updated on 16/Apr/25 $$ \\ $$$$\:\boldsymbol{{Calculate}}\:\boldsymbol{{the}}\:\boldsymbol{{following}}\:\boldsymbol{{integral}}; \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:\frac{\boldsymbol{{J}}_{\boldsymbol{\alpha}} \left(\boldsymbol{{ax}}\right)\boldsymbol{{J}}_{\boldsymbol{\beta}} \left(\boldsymbol{{by}}\right)\boldsymbol{{J}}_{\boldsymbol{\gamma}} \left(\boldsymbol{{cz}}\right)}{\:\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}}…
Question Number 218866 by Nicholas666 last updated on 16/Apr/25 $$ \\ $$$$\:\:\:{evaluate}\:{the}\:{following}\:{integral}\:{in}\:{closed}\:{form}\:{or}\:{express} \\ $$$$\:{it}\:{in}\:{terms}\:{of}\:{known}\:{special}\:{functions};\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{ } ^{\infty} \boldsymbol{{K}}_{\boldsymbol{{i}\lambda}} \left(\boldsymbol{{at}}\right)\boldsymbol{{J}}_{\boldsymbol{\nu}} \left(\boldsymbol{{bt}}\right)^{\boldsymbol{\mu}−\mathrm{1}} \boldsymbol{{dt}} \\ $$$$\:\boldsymbol{{where}}; \\…
Question Number 218857 by SdC355 last updated on 16/Apr/25 $$\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\:\frac{\mathrm{d}{x}\left({t}\right)}{\mathrm{d}{t}}−\left({x}\left({t}\right)\right)^{\mathrm{2}} ={k}_{\mathrm{0}} ^{\mathrm{2}} …?? \\ $$$$\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{Differantial}\:\mathrm{Equation}…??? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 218853 by Lekhraj last updated on 16/Apr/25 Answered by mr W last updated on 17/Apr/25 Commented by mr W last updated on 17/Apr/25…