Menu Close

Author: Tinku Tara

3-x-2-64-x-2-x-2-4-81-x-2-x-2-1-49-x-2-x-2-1-solve-

Question Number 218855 by Lekhraj last updated on 16/Apr/25 $$\sqrt{\mathrm{3}}{x}^{\mathrm{2}} =\sqrt{\left(\mathrm{64}−{x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} −\mathrm{4}\right)}+\sqrt{\left(\mathrm{81}−{x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} −\mathrm{1}\right)}+\sqrt{\left(\mathrm{49}−{x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} −\mathrm{1}\right)}\boldsymbol{{solve}} \\ $$ Terms of Service Privacy Policy Contact:…

Question-218850

Question Number 218850 by hardmath last updated on 16/Apr/25 Answered by MrGaster last updated on 17/Apr/25 $${T}_{{n}} =\frac{\mathrm{1}}{\mathrm{ln}\left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{{r}^{\mathrm{2}} }{\mathrm{1}+{r}^{\mathrm{2}} }\right)}=\frac{\mathrm{1}}{\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{ln}\left(\frac{{r}^{\mathrm{2}} }{\mathrm{1}+{r}^{\mathrm{2}}…

Question-218844

Question Number 218844 by Spillover last updated on 16/Apr/25 Answered by som(math1967) last updated on 16/Apr/25 $${let}\:{lenth}\:{of}\:{rectangle}={l},{width}={b} \\ $$$$\:\mathrm{2}{l}+\mathrm{6}{b}=\mathrm{4}{l}+\mathrm{2}{b}={side}\:{of}\:{square} \\ $$$$\Rightarrow\mathrm{4}{b}=\mathrm{2}{l}\Rightarrow{l}=\mathrm{2}{b} \\ $$$$\:{l}×{b}=\mathrm{18}\Rightarrow\mathrm{2}{b}^{\mathrm{2}} =\mathrm{18}\Rightarrow{b}=\mathrm{3},{l}=\mathrm{6} \\…