Menu Close

Author: Tinku Tara

Can-y-x-be-expressed-as-them-su-of-two-periodic-functions-

Question Number 218609 by MrGaster last updated on 13/Apr/25 $$\mathrm{Can}\:{y}={x}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{as}\:\mathrm{them} \\ $$$$\mathrm{su}\:\mathrm{of}\:\mathrm{two}\:\mathrm{periodic}\:\mathrm{functions}? \\ $$ Answered by MrGaster last updated on 13/Apr/25 $$\mathbb{R}\in{x}={f}\left({x}\right)+{g}\left({x}\right)\:\exists{T}_{\mathrm{1}\:} ,{T}\mathrm{2}>\mathrm{0}:{f}\left({x}+{T}_{\mathrm{1}} \right)−{f}\left({x}\right)\wedge{g}\left({x}+{T}_{\mathrm{2}\:} \right)={g}\left({x}\right)\:\forall{x}\in\mathbb{R}…

Question-218636

Question Number 218636 by hardmath last updated on 13/Apr/25 Answered by vnm last updated on 14/Apr/25 $${let} \\ $$$$\:{a}_{{k}} =\frac{\mathrm{1}}{\mathrm{3}{k}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}{k}−\mathrm{2}}−\frac{\mathrm{2}}{\mathrm{3}{k}} \\ $$$${b}_{{k}} =\frac{\mathrm{4}{k}}{\mathrm{4}{k}+\mathrm{1}}−\frac{\mathrm{4}\left({k}−\mathrm{1}\right)}{\mathrm{4}\left({k}−\mathrm{1}\right)+\mathrm{1}} \\ $$$${if}\:\:\forall{k}\geqslant\mathrm{1}\:{a}_{{k}}…

Question-218629

Question Number 218629 by galisamikshareddy last updated on 13/Apr/25 Answered by galisamikshareddy last updated on 13/Apr/25 $${no}.{of}\:{hours}\:{rehana}\:{works}\:{each}\:{day}\: \\ $$$$=\mathrm{3}\frac{\mathrm{1}}{\mathrm{2}}\:{hours}\: \\ $$$$=\frac{\mathrm{5}}{\mathrm{2}}\:{hours} \\ $$$${no}.{of}\:{days}\:{she}\:{completed}\:{her}\:{work}\: \\ $$$$=\:\mathrm{7}{days}…

Prove-that-for-all-real-numbers-a-and-b-with-a-lt-b-the-following-inequality-holds-a-b-1-dx-3-b-a-a-b-x-a-1-2-dx-a-b-1-a-x-1-3-dx-

Question Number 218626 by Nicholas666 last updated on 13/Apr/25 $$ \\ $$$$\:{Prove}\:{that}\:{for}\:{all}\:{real}\:{numbers}\:{a}\:{and}\:{b} \\ $$$${with}\:{a}<{b},\:{the}\:{following}\:{inequality}\:{holds}; \\ $$$$\left(\int_{{a}} ^{{b}} \mathrm{1}\:{dx}\right)^{\mathrm{3}} \leqslant\:\left({b}−{a}\right)\left(\int_{{a}} ^{{b}} \left({x}−{a}+\mathrm{1}\right)^{\mathrm{2}} {dx}\right)\left(\int_{{a}\:} ^{{b}} \frac{\mathrm{1}}{\left({a}−{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}\right)…

Question-218580

Question Number 218580 by mr W last updated on 12/Apr/25 Commented by vnm last updated on 12/Apr/25 $$ \\ $$$$\mathrm{Let}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{be}\:\mathrm{inscribed}\:\mathrm{in}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{DEF}. \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{DEF}\:\mathrm{is}\:\mathrm{maximal}\: \\ $$$$\mathrm{if}\:\mathrm{there}\:\mathrm{exists}\:\mathrm{a}\:\mathrm{point}\:\mathrm{G}\:\mathrm{inside}\:\mathrm{ABC}\:\mathrm{such}\:\mathrm{that}\:\mathrm{GA},\:\mathrm{GB},\:\mathrm{GC}\:\mathrm{are}\:\mathrm{perpendicular}\: \\…