Menu Close

Author: Tinku Tara

Let-S-R-2-R-3-Sphere-Q1-Find-metric-tensor-g-Q2-Find-Riemann-metric-tensor-R-jkl-i-Q-3-Find-Ricci-tensor-R-Q-4-Find-Ricci-Scalar-R-Christoffel-symbol-first-kind-1-2-

Question Number 225479 by Lara2440 last updated on 28/Oct/25 $$\mathrm{Let}\:\mathcal{S};\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}^{\mathrm{3}} \:\mathrm{Sphere}\: \\ $$$${Q}\mathrm{1}.\:\mathrm{Find}\:\mathrm{metric}\:\mathrm{tensor}\:\mathrm{g}_{\mu\nu} \: \\ $$$${Q}\mathrm{2}.\:\mathrm{Find}\:\mathrm{Riemann}\:\mathrm{metric}\:\mathrm{tensor}\:{R}_{{jkl}} ^{{i}} \\ $$$${Q}.\mathrm{3}\:\:\mathrm{Find}\:\mathrm{Ricci}\:\mathrm{tensor}\:\mathrm{R}_{\alpha\beta} \\ $$$${Q}.\mathrm{4}\:\:\mathrm{Find}\:\mathrm{Ricci}\:\mathrm{Scalar}\:\mathcal{R} \\ $$$$\mathrm{Christoffel}\:\mathrm{symbol}\:\mathrm{first}\:\mathrm{kind}\: \\…

Which-one-is-the-oddest-prime-number-

Question Number 225461 by Jyrgen last updated on 26/Oct/25 $${Which}\:{one}\:{is}\:{the}\:{oddest}\:{prime}\:{number}? \\ $$ Answered by Frix last updated on 26/Oct/25 $$\mathrm{Obviously}\:\mathrm{2} \\ $$$$\left[\mathrm{All}\:\mathrm{other}\:\mathrm{primes}\:\mathrm{are}\:\mathrm{odd}\:\Rightarrow\:\mathrm{it}'\mathrm{s}\:\mathrm{odd}\:\mathrm{for}\:\mathrm{a}\right. \\ $$$$\left.\mathrm{prime}\:\mathrm{number}\:\mathrm{to}\:\mathrm{be}\:\mathrm{not}\:\mathrm{odd}.\right] \\…

Question-225407

Question Number 225407 by mr W last updated on 25/Oct/25 Commented by mr W last updated on 25/Oct/25 $${the}\:{frustum}\:{of}\:{a}\:{cone}\:{is}\:{cut}\:{into} \\ $$$${two}\:{parts}\:{as}\:{shown}.\:{find}\:{the}\:{volume} \\ $$$${of}\:{each}\:{part}\:{and}\:{the}\:{area}\:{of}\:{the}\:{cut} \\ $$$${section}.…

n-1-1-n-1-H-n-H-2n-2-n-

Question Number 225391 by Tawa11 last updated on 24/Oct/25 $$\:\:\:\:\:\:\:\underset{\mathrm{n}\:\:\:=\:\:\:\mathrm{1}} {\overset{\infty} {\sum}}\:\left(−\:\:\:\:\mathrm{1}\right)^{\mathrm{n}\:\:\:\:−\:\:\:\mathrm{1}} \:\frac{\mathrm{H}_{\mathrm{n}} \:\mathrm{H}_{\mathrm{2n}} ^{\left(\mathrm{2}\right)} }{\mathrm{n}}\:\:\:\:\:\:\:=\:\:\:\:\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-225392

Question Number 225392 by Rojarani last updated on 24/Oct/25 Commented by Ghisom_ last updated on 25/Oct/25 $$\mathrm{there}\:\mathrm{should}\:\mathrm{be}\:\mathrm{9}\:\mathrm{solutions}\:\mathrm{for}\:\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}\:\in\mathbb{C}^{\mathrm{3}} \\ $$ Answered by Kademi last updated on…