Menu Close

Author: Tinku Tara

Question-218560

Question Number 218560 by MrGaster last updated on 12/Apr/25 Commented by MrGaster last updated on 12/Apr/25 $${J}_{\mathrm{0}} \left({a}\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {a}^{\mathrm{2}{n}} }{\left({n}!\right)^{\mathrm{2}} \mathrm{2}^{\mathrm{2}{n}} }\left(\mathrm{1}−{u}^{\mathrm{2}}…

A-kind-of-calculation-relatedt-o-arctangent-integral-Exere-0-1-arctan-2-x-1-x-2-dx-Solution-0-1-arctan-2-x-x-dx-A-0-1-x-arctan-2-x-1-x-2-dx-B-0-1-x-arctan-2-

Question Number 218594 by MrGaster last updated on 12/Apr/25 $$\mathrm{A}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{calculation}\:\mathrm{relatedt} \\ $$$$\mathrm{o}\:\mathrm{arctangent}\:\mathrm{integral}: \\ $$$$\boldsymbol{\mathrm{Exere}}:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{arctan}^{\mathrm{2}} }{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}. \\ $$$$\mathrm{Solution}:\underset{{A}} {\underbrace{=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{arctan}^{\mathrm{2}} {x}}{{x}}{dx}}}\:−\underset{{B}} {\underbrace{\int_{\mathrm{0}}…

solve-for-x-R-0-sin-xt-e-t-1-dt-2-coth-x-1-2x-

Question Number 218563 by Nicholas666 last updated on 12/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:{solve}\:{for}\:\boldsymbol{{x}}\:\in\:\mathbb{R}\: \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({xt}\right)}{{e}^{{t}} −\mathrm{1}\:}\:{dt}\:=\:\frac{\boldsymbol{\pi}}{\mathrm{2}}\:{coth}\left(\boldsymbol{\pi}{x}\right)\:−\:\frac{\mathrm{1}}{\mathrm{2}{x}}\:\: \\ $$$$ \\ $$ Terms of Service Privacy…

Question-218527

Question Number 218527 by Spillover last updated on 11/Apr/25 Answered by A5T last updated on 12/Apr/25 $$\mathrm{CD}=\mathrm{BD}\:\wedge\:\angle\mathrm{CDB}=\mathrm{90}°\:\Rightarrow\:\mathrm{BC}=\mathrm{CD}\sqrt{\mathrm{2}}=\mathrm{2R} \\ $$$$\Rightarrow\mathrm{CD}=\mathrm{R}\sqrt{\mathrm{2}} \\ $$$$\mathrm{Ptolemy}'\mathrm{s}\:\mathrm{theorem}:\:\mathrm{CD}×\mathrm{AB}+\mathrm{AC}×\mathrm{BD}=\mathrm{AD}×\mathrm{BC} \\ $$$$\Rightarrow\left(\mathrm{AB}+\mathrm{AC}\right)=\mathrm{AD}\sqrt{\mathrm{2}}…\left(\mathrm{i}\right) \\ $$$$\mathrm{AB}^{\mathrm{2}}…

Solve-2-w-t-2-c-2-2-w-x-2-w-0-t-f-t-lim-x-w-x-t-0-Boundary-Condition-w-x-0-0-w-t-x-0-0-Initial-Condition-f-t-sin-t-t-0-2pi-0-otherwise-

Question Number 218539 by SdC355 last updated on 11/Apr/25 $${S}\mathrm{olve} \\ $$$$\frac{\partial^{\mathrm{2}} {w}}{\partial{t}^{\mathrm{2}} }={c}^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {w}}{\partial{x}^{\mathrm{2}} } \\ $$$${w}\left(\mathrm{0},{t}\right)={f}\left({t}\right)\:,\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{w}\left({x},{t}\right)=\mathrm{0}\:\left(\mathrm{Boundary}\:\mathrm{Condition}\right) \\ $$$${w}\left({x},\mathrm{0}\right)=\mathrm{0}\:,\:{w}_{{t}} \left({x},\mathrm{0}\right)=\mathrm{0}\:\left(\mathrm{Initial}\:\mathrm{Condition}\right) \\ $$$${f}\left({t}\right)\begin{cases}{\mathrm{sin}\left({t}\right)\:,\:{t}\in\left[\mathrm{0},\mathrm{2}\pi\right)}\\{\mathrm{0}\:,\:\mathrm{otherwise}}\end{cases}…