Menu Close

Author: Tinku Tara

Question-218428

Question Number 218428 by hardmath last updated on 09/Apr/25 Answered by A5T last updated on 09/Apr/25 $$\mathrm{Let}\:\mathrm{F}\:\in\:\mathrm{BC}\:\mathrm{such}\:\mathrm{that}\:\mathrm{AF}\bot\mathrm{BC} \\ $$$$\mathrm{AB}=\mathrm{AE}\Rightarrow\mathrm{BF}=\mathrm{FE}=\frac{\mathrm{7}+\mathrm{3}}{\mathrm{2}}=\mathrm{5} \\ $$$$\mathrm{BF}×\mathrm{BC}=\mathrm{BA}^{\mathrm{2}} \Rightarrow\mathrm{5}\left(\mathrm{10}+\mathrm{x}\right)=\mathrm{BA}^{\mathrm{2}} …\left(\mathrm{i}\right) \\ $$$$\mathrm{AB}^{\mathrm{2}}…

Question-218399

Question Number 218399 by Nicholas666 last updated on 09/Apr/25 Answered by MrGaster last updated on 10/Apr/25 $$\begin{array}{|c|}{{f}\left({n}\right)=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}}\\\hline\end{array}\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{even} \\ $$$$\cancel{{f}\left({n}\right)=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$${f}\left({n}\right)=\frac{{n}^{\mathrm{2}} −\tau\left({n}\right)}{\mathrm{2}} \\…

prove-d-

Question Number 218421 by SdC355 last updated on 09/Apr/25 $$\mathrm{prove}\: \\ $$$$\int_{\:\partial\boldsymbol{\Sigma}} \:\boldsymbol{\omega}=\int_{\:\boldsymbol{\Sigma}\:} \mathrm{d}\boldsymbol{\omega} \\ $$ Commented by Ghisom last updated on 09/Apr/25 $$\mathrm{is}\:\mathrm{this}\:\mathrm{the}\:\mathrm{newest}\:\mathrm{anti}−\mathrm{syntax}? \\…