Menu Close

Author: Tinku Tara

Question-218384

Question Number 218384 by Spillover last updated on 08/Apr/25 Answered by Nicholas666 last updated on 09/Apr/25 $${percentage}\:{of}\:{red}\:{area}: \\ $$$$\frac{\mathrm{15}\pi\sqrt{\mathrm{3}}}{\mathrm{32}.\mathrm{3}}.\mathrm{100\%}=\frac{\mathrm{5}\pi\sqrt{\mathrm{3}}}{\mathrm{32}}=\mathrm{100\%} \\ $$$$=\frac{\mathrm{5}.\pi.\mathrm{1},\mathrm{732}}{\mathrm{32}}.\mathrm{100\%}=\frac{\mathrm{27},\mathrm{206}}{\mathrm{32}}.\mathrm{100\%}=\mathrm{85},\mathrm{02\%} \\ $$$$ \\ $$…

0-J-ar-r-2-k-2-dr-

Question Number 218376 by Nicholas666 last updated on 08/Apr/25 $$ \\ $$$$\:\:\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{J}}_{\boldsymbol{\alpha}} \left(\boldsymbol{{ar}}\right)}{\left(\boldsymbol{{r}}^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} \right)\boldsymbol{\mu}}\boldsymbol{{dr}}\: \\ $$$$ \\ $$ Terms of Service Privacy…

tan-x-sin-3-x-cos-x-dx-

Question Number 218375 by Nicholas666 last updated on 08/Apr/25 $$ \\ $$$$\:\:\int\frac{\sqrt{\boldsymbol{{tan}}\:\boldsymbol{{x}}}}{\boldsymbol{{sin}}^{\mathrm{3}} \boldsymbol{{x}}\:\boldsymbol{{cos}}\:\boldsymbol{{x}}}\boldsymbol{{dx}} \\ $$$$ \\ $$ Answered by Ghisom last updated on 08/Apr/25 $$\int\frac{\sqrt{\mathrm{tan}\:{x}}}{\mathrm{sin}^{\mathrm{3}}…

Question-218349

Question Number 218349 by Hanuda354 last updated on 07/Apr/25 Answered by vnm last updated on 07/Apr/25 $$ \\ $$$$\varphi\left(\theta\right)=\theta−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{sin}\:\theta}{\mathrm{5}} \\ $$$${s}\left(\alpha\right)=\frac{\mathrm{5}}{\mathrm{2}}\left(\mathrm{5}\alpha−\mathrm{sin}\alpha\right) \\ $$$${S}={s}\left(\varphi\left(\frac{\pi}{\mathrm{3}}\right)\right)−{s}\left(\varphi\left(\frac{\pi}{\mathrm{2}}\right)\right)+\frac{\mathrm{19}\pi}{\mathrm{2}}= \\…

Question-218345

Question Number 218345 by Spillover last updated on 07/Apr/25 Answered by som(math1967) last updated on 07/Apr/25 $${let}\:{AF}={AE}={x} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{3}×\left(\mathrm{6}+{x}\right)+\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{3}×\left(\mathrm{8}+{x}\right)+\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{3}×\mathrm{14}=\mathrm{63} \\ $$$$\Rightarrow\frac{\mathrm{3}}{\mathrm{2}}×\left(\mathrm{28}+\mathrm{2}{x}\right)=\mathrm{63} \\ $$$$\mathrm{28}+\mathrm{2}{x}=\mathrm{42} \\ $$$$\:\therefore{x}=\mathrm{7}…