Question Number 217690 by hardmath last updated on 18/Mar/25 Commented by hardmath last updated on 18/Mar/25 $$\bigstar\mathrm{Hard}\bigstar \\ $$ Commented by mr W last updated…
Question Number 217691 by PaulDirac last updated on 18/Mar/25 Answered by mr W last updated on 19/Mar/25 $${let}\:{a}=\mathrm{9}^{\mathrm{9}^{\mathrm{9}} } \\ $$$${I}=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\left({ax}\right){dx} \\ $$$$\:\:=\frac{\mathrm{1}}{{a}}\int_{\mathrm{0}}…
Question Number 217685 by mnjuly1970 last updated on 18/Mar/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 217686 by mnjuly1970 last updated on 18/Mar/25 Commented by mnjuly1970 last updated on 18/Mar/25 $$\:\:\:\:\:{why}\:\:\:\:\:\:{BC}={CF}\:\:?\:\:\:\:\Uparrow\Uparrow\Uparrow \\ $$$$\:\:\:\:\:\:\:{and}\:\:{find}\:{the}\:{value}\:{of}\:\:\:\:''\:{x}\:''. \\ $$ Commented by mr W…
Question Number 217681 by SdC355 last updated on 18/Mar/25 $$\mathrm{prove} \\ $$$$\underset{{p}\in\mathbb{P}} {\overset{\infty} {\prod}}\:{p}=\sqrt{\mathrm{2}\pi} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{a}_{{k}} ={a}_{\mathrm{1}} {a}_{\mathrm{2}} \centerdot\centerdot\centerdot{a}_{{n}} \\ $$ Terms of…
Question Number 217683 by MrGaster last updated on 18/Mar/25 $$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\sqrt{{K}^{\mathrm{2}} +\mathrm{36}{K}'^{\mathrm{2}} }+\mathrm{6}{K}^{'} }{{K}^{\mathrm{2}} +\mathrm{36}{K}^{'\mathrm{2}} }\:}\frac{{dk}}{\:\sqrt{{k}}\left(\mathrm{1}−{k}^{\mathrm{2}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} }=\sqrt{\pi}\left(\sqrt{\mathrm{2}}−\sqrt{\frac{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}}\right) \\ $$ Answered by MrGaster last…
Question Number 217676 by Ikbal last updated on 18/Mar/25 $${Find}\:{a}\:{ral}\:{root}\:{of}\:{the}\:{equation}\:{x}^{\mathrm{3}} −{x}−\mathrm{1}=\mathrm{0}\:{by}\:{fixed}\:{point}\:{iteration}\:{method} \\ $$ Answered by SdC355 last updated on 18/Mar/25 $${z}^{\mathrm{3}} −{z}−\mathrm{1}=\mathrm{0} \\ $$$${z}_{{n}+\mathrm{1}} ={z}_{{n}}…
Question Number 217679 by SdC355 last updated on 18/Mar/25 $$\mathrm{constant}\:{k}=\underset{{p}\in\mathbb{P}} {\overset{\infty} {\mathrm{K}}}\:\frac{\mathrm{1}}{{p}}=\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}+\frac{\mathrm{1}}{\mathrm{5}+\frac{\mathrm{1}}{\mathrm{7}+\frac{\mathrm{1}}{\mathrm{11}+\frac{\mathrm{1}}{\ddots}}}}}}\: \\ $$$$\frac{\mathrm{1}}{{k}}\:\mathrm{is}\:\mathrm{convergence}?? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 217674 by Jubr last updated on 18/Mar/25 Commented by Jubr last updated on 18/Mar/25 $${Is}\:{this}\:{possible}\:{to}\:{solve}? \\ $$ Commented by SdC355 last updated on…
Question Number 217660 by ArshadS last updated on 17/Mar/25 $$\:{f}\left({x}\right)\:+\:{f}\left({y}\right)={f}\left({x}+{y}\right)+{xy}\: \\ $$$${f}\left({x}\right)=? \\ $$ Answered by vnm last updated on 19/Mar/25 $${f}\left({x}\right)+{f}\left(\mathrm{0}\right)={f}\left({x}+\mathrm{0}\right)+{x}\centerdot\mathrm{0}\:\Rightarrow\:{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}\left({x}\right)+{f}\left(−{x}\right)={f}\left({x}−{x}\right)+{x}\left(−{x}\right)=−{x}^{\mathrm{2}} \\…