Menu Close

Author: Tinku Tara

given-the-recursive-a-n-define-by-setting-a-1-0-1-a-n-1-a-n-1-a-n-n-1-prove-that-1-lim-n-na-n-1-2-b-n-n-1-na-n-is-a-incresing-sequence-and

Question Number 216785 by universe last updated on 20/Feb/25 $$\:\:\:\mathrm{given}\:\mathrm{the}\:\mathrm{recursive}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}\:\mathrm{define}\:\mathrm{by}\:\mathrm{setting} \\ $$$$\:\:\mathrm{a}_{\mathrm{1}\:} \:\in\:\left(\mathrm{0},\mathrm{1}\right)\:\:\:,\:\:\:\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:=\:\mathrm{a}_{\mathrm{n}} \left(\mathrm{1}−\mathrm{a}_{\mathrm{n}} \right)\:\:\:,\:\mathrm{n}\geqslant\mathrm{1} \\ $$$$\:\:\mathrm{prove}\:\mathrm{that}\:\:\left(\mathrm{1}\right)\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{na}_{\mathrm{n}} =\:\mathrm{1} \\ $$$$\:\:\left(\mathrm{2}\right)\:\:\mathrm{b}_{\mathrm{n}} \:=\:\mathrm{n}\left(\mathrm{1}−\mathrm{na}_{\mathrm{n}} \right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{incresing}\:\mathrm{sequence}…

Question-216786

Question Number 216786 by mnjuly1970 last updated on 20/Feb/25 Answered by mehdee7396 last updated on 21/Feb/25 $${suppose}\:\:{a},{b},{c}\in{A} \\ $$$${a}+{b}={p}\:\:\left({i}\right)\:\:\&\:\:{a}+{c}={q}\:\:\left({ii}\right)\:\:\&\:\:\:{b}+{c}={m}\:\:\left({iii}\right)\:;\:{p},{q},{m}\in{Q} \\ $$$$\left({i}\right)−\left({ii}\right)\rightarrow{b}−{c}={p}−{q}\:\:\left({iv}\right) \\ $$$$\:\left({iv}\right)+\left({iii}\right)\rightarrow\mathrm{2}{b}={p}−{q}+{m}\in{Q}\:\:\: \\ $$$$\Rightarrow{b}\in{Q}\:\:{it}\:{is}\:\:{incorrect}\:…

form-the-differential-equationfrom-the-following-1-y-Ae-3x-Be-5x-2-y-2-x-1-3-c-y-c-2-x-3-0-

Question Number 216787 by Engr_Jidda last updated on 20/Feb/25 $${form}\:{the}\:{differential}\:{equationfrom}\:{the}\:{following} \\ $$$$\left.\mathrm{1}\right)\:{y}={Ae}^{\mathrm{3}{x}} +{Be}^{\mathrm{5}{x}} \\ $$$$\left.\mathrm{2}\right)\:{y}^{\mathrm{2}} =\left({x}−\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{c}\left({y}+{c}\right)^{\mathrm{2}} +{x}^{\mathrm{3}} =\mathrm{0} \\ $$ Answered by som(math1967)…

find-tan-2-x-1-sec-4-x-dx-

Question Number 216772 by Nadirhashim last updated on 19/Feb/25 $$\:\:\boldsymbol{{find}}\:\int\frac{\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)\:}{\mathrm{1}−\boldsymbol{{sec}}^{\mathrm{4}} \left(\boldsymbol{{x}}\right)}\:.\boldsymbol{{dx}}\:\: \\ $$ Answered by MrGaster last updated on 19/Feb/25 $$\:\int\frac{\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)\:}{\mathrm{1}−\boldsymbol{{sec}}^{\mathrm{4}} \left(\boldsymbol{{x}}\right)}\:.\boldsymbol{{dx}}\:=\int\frac{\mathrm{tan}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}}…

find-tan-2-x-1-sec-4-x-dx-

Question Number 216774 by Nadirhashim last updated on 19/Feb/25 $$\:\:\boldsymbol{{find}}\:\int\:\frac{\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)\:}{\mathrm{1}+\boldsymbol{{sec}}^{\mathrm{4}} \left(\boldsymbol{{x}}\right)}\:.\boldsymbol{{dx}}\: \\ $$ Answered by MathematicalUser2357 last updated on 25/Feb/25 $$\frac{\mathrm{1}}{\mathrm{2}}\left\{−\mathrm{2}{x}+\sqrt{\mathrm{1}−{i}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\left({x}\right)}{\:\sqrt{\mathrm{1}−{i}}}\right)+\sqrt{\mathrm{1}+{i}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\left({x}\right)}{\:\sqrt{\mathrm{1}+{i}}}\right)\right\}+{C} \\…