Question Number 216656 by sanpar last updated on 14/Feb/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 216659 by issac last updated on 14/Feb/25 Answered by issac last updated on 14/Feb/25 $$\mathrm{Q216647} \\ $$$$\mathrm{oh}\:\mathrm{Jesus}….\mathrm{shit}…. \\ $$$$\mathrm{and}\:\mathrm{F}_{\mathrm{1}} \left({a},\mathrm{b}_{\mathrm{1}} ,\mathrm{b}_{\mathrm{2}} ,\mathrm{c},{x},{y}\right)\:\mathrm{is} \\…
Question Number 216638 by Nadirhashim last updated on 13/Feb/25 $$\:\:\boldsymbol{{without}}\:\boldsymbol{{using}}\:\boldsymbol{{LHopital}} \\ $$$$\:\:\:\boldsymbol{{rule}}\:\boldsymbol{{evalute}}\: \\ $$$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{{ln}}\left(\mathrm{1}−{x}\right)−\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\:}{\mathrm{1}−\boldsymbol{{cox}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)} \\ $$ Commented by MathematicalUser2357 last updated on 13/Feb/25…
Question Number 216644 by Raajaravwan last updated on 13/Feb/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 216645 by Raajaravwan last updated on 13/Feb/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 216646 by York12 last updated on 13/Feb/25 $$\mathrm{Let}\:{a},{b},{c}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{an}\:\mathrm{cubic}\:\mathrm{equation}\:\mathrm{such}\:\mathrm{that} \\ $$$${ab}+{bc}+{ac}+{abc}=\mathrm{4},\:\mathrm{show}\:\mathrm{using}\:\mathrm{vieta}'\mathrm{s}\:\mathrm{relations}\:\mathrm{that} \\ $$$$\frac{{a}}{{a}+\mathrm{2}}+\frac{{b}}{{b}+\mathrm{2}}+\frac{{c}}{{c}+\mathrm{2}}=\mathrm{1} \\ $$ Answered by A5T last updated on 14/Feb/25 $$\frac{\mathrm{a}\left(\mathrm{b}+\mathrm{2}\right)\left(\mathrm{c}+\mathrm{2}\right)+\mathrm{b}\left(\mathrm{a}+\mathrm{2}\right)\left(\mathrm{c}+\mathrm{2}\right)+\mathrm{c}\left(\mathrm{a}+\mathrm{2}\right)\left(\mathrm{b}+\mathrm{2}\right)}{\left(\mathrm{a}+\mathrm{2}\right)\left(\mathrm{b}+\mathrm{2}\right)\left(\mathrm{c}+\mathrm{2}\right)}=\mathrm{1} \\…
Question Number 216647 by sniper237 last updated on 13/Feb/25 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\left({acos}^{\mathrm{2}} {x}+{bsin}^{\mathrm{2}} {x}\right)^{{n}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 216607 by Tawa11 last updated on 12/Feb/25 Answered by Rasheed.Sindhi last updated on 12/Feb/25 $$\mathrm{4}{x}^{\mathrm{2}} +{bx}−\mathrm{45}=\left({hx}+{k}\right)\left({x}+{j}\right);{h},{k},{j}\in\mathbb{Z} \\ $$$$\:\:\:\:\:\:\:\:={hx}^{\mathrm{2}} +\left({hj}+{k}\right){x}+{kj} \\ $$$${kj}=−\mathrm{45}\Rightarrow{j}=−\frac{\mathrm{45}}{{k}} \\ $$$$\frac{\mathrm{45}}{{k}}=−{j}\:\in\:\mathbb{Z}\:\rightarrow\left({D}\right)…
Question Number 216596 by issac last updated on 12/Feb/25 $$\underset{\mathcal{D}} {\int\int}\:\:\:\frac{\mathrm{sin}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{tan}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}{\mathrm{cos}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{tan}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}\mathrm{d}{x}\mathrm{d}{y} \\ $$$$\mathcal{D}=\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right]×\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right] \\ $$ Answered by…
Question Number 216630 by Tawa11 last updated on 12/Feb/25 the circles x² + y² -4x -2y +3 =0 and x² +y² + 2x +4y -3…