Question Number 224927 by behi834171 last updated on 12/Oct/25 Commented by behi834171 last updated on 12/Oct/25 $$\boldsymbol{{s}}_{\mathrm{1}} =\mathrm{1};\boldsymbol{{s}}_{\mathrm{2}} =\mathrm{2};\boldsymbol{{s}}_{\mathrm{3}} =\mathrm{3}\left(\boldsymbol{{unit}}\right)^{\mathrm{2}} \\ $$$$\boldsymbol{{S}}_{\bigtriangleup} =?\:\left(\boldsymbol{{unit}}\right)^{\mathrm{2}} \\ $$…
Question Number 224920 by Tawa11 last updated on 12/Oct/25 $$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{x}\:\mathrm{ln}\left(\mathrm{1}\:\:\:+\:\:\:\mathrm{x}\right)\:\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{1}\:\:\:\:+\:\:\:\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 224922 by fantastic last updated on 12/Oct/25 $${Domain} \\ $$$${f}\left({x}\right)=\sqrt{\mathrm{log}\:_{{e}} \left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{6}\right)} \\ $$ Answered by Raphael254 last updated on 12/Oct/25 $$ \\…
Question Number 224919 by fkwow344 last updated on 12/Oct/25 $${T}\left({x},{y}\right);\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}\:,\:\:{T}\left({x},{y}\right)=\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{b}}\right)^{\mathrm{2}} \\ $$$${K}\left({x},{y}\right)=\frac{\mathrm{4}}{{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{4}{x}^{\mathrm{2}} }{{a}^{\mathrm{4}} }+\frac{\mathrm{4}{y}^{\mathrm{2}} }{{b}^{\mathrm{4}} }\right)^{\mathrm{2}} } \\ $$$$\int_{\:\mathcal{S}} \mathrm{d}\boldsymbol{\mathrm{r}}^{\mathrm{2}} {K}=?…
Question Number 224908 by Tinku Tara last updated on 11/Oct/25 $$\mathrm{Hello}\:\mathrm{Everyone} \\ $$$$\mathrm{We}\:\mathrm{recently}\:\mathrm{did}\:\mathrm{an}\:\mathrm{update}\:\mathrm{that} \\ $$$$\mathrm{cause}\:\mathrm{view}\:\mathrm{older}\:\mathrm{button}\:\mathrm{to}\:\mathrm{be}\:\mathrm{partially} \\ $$$$\mathrm{hidden}\:\mathrm{behind}\:\mathrm{the}\:\mathrm{navigation}\:\mathrm{button}. \\ $$$$\mathrm{We}\:\mathrm{will}\:\mathrm{release}\:\mathrm{an}\:\mathrm{update}\:\mathrm{soon}. \\ $$$$ \\ $$$$\boldsymbol{\mathrm{workaround}} \\ $$$$\mathrm{Tap}\:+\:\mathrm{sign}\:\mathrm{at}\:\mathrm{top}\:\mathrm{of}\:\mathrm{screen}\:\mathrm{to}\:\mathrm{open}…
Question Number 224907 by fantastic last updated on 11/Oct/25 $${Let}\:{B}=\left\{\left({x},{y},{z}\right)\in\mathbb{R}^{\mathrm{3}} :{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \leqslant\mathrm{1}\right\} \\ $$$${and}\:{define}\:{u}\left({x},{y},{z}\right)=\mathrm{sin}\:\left(\left(\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −{z}^{\mathrm{2}} \right)^{\mathrm{2}} \right) \\ $$$${for}\:\left({x},{y},{z}\right)\in{B}. \\ $$$${Then}\:{the}\:{value}\:{of} \\…
Question Number 224896 by mr W last updated on 11/Oct/25 Commented by mr W last updated on 11/Oct/25 $${Tinku}\:{Tara}\:{sir}: \\ $$$${please}\:{check}\:{following}\:{issues}: \\ $$$$\left.\mathrm{1}\right)\:{the}\:{status}\:{bar}\:{is}\:{not}\:{visible} \\ $$$$\left.\mathrm{2}\right)\:{sometimes}\:{the}\:“{VIEW}\:{OLDER}''…
Question Number 224915 by fantastic last updated on 11/Oct/25 $${evaluate}\: \\ $$$$\int_{{C}} \left(\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}{z}^{\mathrm{2}} \right){dx}+\left(\mathrm{6}{x}−\mathrm{10}{z}\right){y}\:{dy}\:+\left(\mathrm{4}{xz}−\mathrm{5}{y}^{\mathrm{2}} \right){dz} \\ $$$${along}\:{the}\:{portion}\:{from}\:\left(\mathrm{1},\mathrm{0},\mathrm{1}\right)\:{to}\:\left(\mathrm{3},\mathrm{4},\mathrm{5}\right)\:{of} \\ $$$${the}\:{curve}\:{C}, \\ $$$${which}\:{is}\:{the}\:{intersection}\:{of}\:{the} \\ $$$${two}\:{surfaces}\:{z}^{\mathrm{2}} ={x}^{\mathrm{2}}…
Question Number 224892 by fantastic last updated on 10/Oct/25 $$\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:{e}^{{x}^{\mathrm{2}} } \mathrm{sin}\:\left({nx}\right){dx}=? \\ $$ Commented by Frix last updated on 11/Oct/25 $$\mathrm{Hint}:…
Question Number 224879 by fkwow344 last updated on 09/Oct/25 $$\mathrm{prove} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{ln}\left({p}_{{n}} \right)}\:\underset{{k}} {\prod}\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{p}_{{k}} }}={e}^{\Upsilon_{\mathrm{0}} } \:,\: \\ $$$$\Upsilon_{\mathrm{0}} =\mathrm{0}.\mathrm{57721566490153286060}.. \\ $$ Answered by…