Menu Close

Author: Tinku Tara

Question-224927

Question Number 224927 by behi834171 last updated on 12/Oct/25 Commented by behi834171 last updated on 12/Oct/25 $$\boldsymbol{{s}}_{\mathrm{1}} =\mathrm{1};\boldsymbol{{s}}_{\mathrm{2}} =\mathrm{2};\boldsymbol{{s}}_{\mathrm{3}} =\mathrm{3}\left(\boldsymbol{{unit}}\right)^{\mathrm{2}} \\ $$$$\boldsymbol{{S}}_{\bigtriangleup} =?\:\left(\boldsymbol{{unit}}\right)^{\mathrm{2}} \\ $$…

T-x-y-R-2-R-T-x-y-x-a-2-y-b-2-K-x-y-4-a-2-b-2-1-4x-2-a-4-4y-2-b-4-2-S-dr-2-K-S-sheprical-coordinate-and-associate-with-Euler-characteristic-T-

Question Number 224919 by fkwow344 last updated on 12/Oct/25 $${T}\left({x},{y}\right);\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}\:,\:\:{T}\left({x},{y}\right)=\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{b}}\right)^{\mathrm{2}} \\ $$$${K}\left({x},{y}\right)=\frac{\mathrm{4}}{{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{4}{x}^{\mathrm{2}} }{{a}^{\mathrm{4}} }+\frac{\mathrm{4}{y}^{\mathrm{2}} }{{b}^{\mathrm{4}} }\right)^{\mathrm{2}} } \\ $$$$\int_{\:\mathcal{S}} \mathrm{d}\boldsymbol{\mathrm{r}}^{\mathrm{2}} {K}=?…

Hello-Everyone-We-recently-did-an-update-that-cause-view-older-button-to-be-partially-hidden-behind-the-navigation-button-We-will-release-an-update-soon-workaround-Tap-sign-at-top-of-screen-to-op

Question Number 224908 by Tinku Tara last updated on 11/Oct/25 $$\mathrm{Hello}\:\mathrm{Everyone} \\ $$$$\mathrm{We}\:\mathrm{recently}\:\mathrm{did}\:\mathrm{an}\:\mathrm{update}\:\mathrm{that} \\ $$$$\mathrm{cause}\:\mathrm{view}\:\mathrm{older}\:\mathrm{button}\:\mathrm{to}\:\mathrm{be}\:\mathrm{partially} \\ $$$$\mathrm{hidden}\:\mathrm{behind}\:\mathrm{the}\:\mathrm{navigation}\:\mathrm{button}. \\ $$$$\mathrm{We}\:\mathrm{will}\:\mathrm{release}\:\mathrm{an}\:\mathrm{update}\:\mathrm{soon}. \\ $$$$ \\ $$$$\boldsymbol{\mathrm{workaround}} \\ $$$$\mathrm{Tap}\:+\:\mathrm{sign}\:\mathrm{at}\:\mathrm{top}\:\mathrm{of}\:\mathrm{screen}\:\mathrm{to}\:\mathrm{open}…

Let-B-x-y-z-R-3-x-2-y-2-z-2-1-and-define-u-x-y-z-sin-1-x-2-y-2-z-2-2-for-x-y-z-B-Then-the-value-of-B-2-u-x-2-2-u-x-2-2-u-z-2-dxdydz-is-

Question Number 224907 by fantastic last updated on 11/Oct/25 $${Let}\:{B}=\left\{\left({x},{y},{z}\right)\in\mathbb{R}^{\mathrm{3}} :{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \leqslant\mathrm{1}\right\} \\ $$$${and}\:{define}\:{u}\left({x},{y},{z}\right)=\mathrm{sin}\:\left(\left(\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −{z}^{\mathrm{2}} \right)^{\mathrm{2}} \right) \\ $$$${for}\:\left({x},{y},{z}\right)\in{B}. \\ $$$${Then}\:{the}\:{value}\:{of} \\…

Question-224896

Question Number 224896 by mr W last updated on 11/Oct/25 Commented by mr W last updated on 11/Oct/25 $${Tinku}\:{Tara}\:{sir}: \\ $$$${please}\:{check}\:{following}\:{issues}: \\ $$$$\left.\mathrm{1}\right)\:{the}\:{status}\:{bar}\:{is}\:{not}\:{visible} \\ $$$$\left.\mathrm{2}\right)\:{sometimes}\:{the}\:“{VIEW}\:{OLDER}''…

evaluate-C-3y-2-2z-2-dx-6x-10z-y-dy-4xz-5y-2-dz-along-the-portion-from-1-0-1-to-3-4-5-of-the-curve-C-which-is-the-intersection-of-the-two-surfaces-z-2-x-2-y-2-and-z-y-1-

Question Number 224915 by fantastic last updated on 11/Oct/25 $${evaluate}\: \\ $$$$\int_{{C}} \left(\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}{z}^{\mathrm{2}} \right){dx}+\left(\mathrm{6}{x}−\mathrm{10}{z}\right){y}\:{dy}\:+\left(\mathrm{4}{xz}−\mathrm{5}{y}^{\mathrm{2}} \right){dz} \\ $$$${along}\:{the}\:{portion}\:{from}\:\left(\mathrm{1},\mathrm{0},\mathrm{1}\right)\:{to}\:\left(\mathrm{3},\mathrm{4},\mathrm{5}\right)\:{of} \\ $$$${the}\:{curve}\:{C}, \\ $$$${which}\:{is}\:{the}\:{intersection}\:{of}\:{the} \\ $$$${two}\:{surfaces}\:{z}^{\mathrm{2}} ={x}^{\mathrm{2}}…

prove-lim-n-1-ln-p-n-k-1-1-1-p-k-e-0-0-0-57721566490153286060-

Question Number 224879 by fkwow344 last updated on 09/Oct/25 $$\mathrm{prove} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{ln}\left({p}_{{n}} \right)}\:\underset{{k}} {\prod}\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{p}_{{k}} }}={e}^{\Upsilon_{\mathrm{0}} } \:,\: \\ $$$$\Upsilon_{\mathrm{0}} =\mathrm{0}.\mathrm{57721566490153286060}.. \\ $$ Answered by…