Menu Close

Author: Tinku Tara

prove-Sphere-S-R-3-R-x-2-y-2-z-2-R-2-Euler-characteristic-2-by-gauss-Bonnet-theorem-2pi-dA-K-Gauss-curvature-defined-as-K-det-det-I-LN-M-2-EG-F-2-such-that-I-

Question Number 224789 by fkwow344 last updated on 04/Oct/25 $$\mathrm{prove}\:\mathrm{Sphere}\:\mathcal{S};\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={R}^{\mathrm{2}} \:,\:\mathrm{Euler}\:\mathrm{characteristic}\:\boldsymbol{\chi}=\mathrm{2} \\ $$$$\mathrm{by}\:\mathrm{gauss}-\mathrm{Bonnet}\:\mathrm{theorem} \\ $$$$\mathrm{2}\pi\boldsymbol{\chi}\left(\boldsymbol{\Omega}\right)=\int_{\:\boldsymbol{\Omega}} \:\mathrm{d}{A}\:{K} \\ $$$$\mathrm{Gauss}\:\mathrm{curvature}\:\mathrm{defined}\:\mathrm{as}\:{K}=\frac{\mathrm{det}\:\Pi}{\mathrm{det}\:\mathrm{I}}=\frac{{LN}−{M}^{\mathrm{2}} }{{EG}−{F}^{\mathrm{2}}…

2x-3-x-3-3-3-x-2-

Question Number 224770 by Abdulazim last updated on 03/Oct/25 $$\:\:\:\left(\mathrm{2}{x}^{\mathrm{3}} +{x}−\mathrm{3}\right)^{\mathrm{3}} =\mathrm{3}−{x}^{\mathrm{2}} \\ $$ Commented by Ghisom_ last updated on 04/Oct/25 $$\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\ $$ Terms…

Question-224763

Question Number 224763 by behi834171 last updated on 02/Oct/25 Commented by Ghisom_ last updated on 03/Oct/25 $$\mathrm{min}\:{f}\left({x},\:{y}\right)\:\mathrm{is}\:\approx\mathrm{3}.\mathrm{67113410}\:\mathrm{at} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\begin{pmatrix}{\frac{\mathrm{5}\sqrt{\mathrm{6}}−\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{7}}}\\{\mathrm{3}\sqrt{\mathrm{10}}−\mathrm{5}\sqrt{\mathrm{3}}}\end{pmatrix} \\ $$ Commented by behi834171 last…