Menu Close

Author: Tinku Tara

The-value-of-n-for-which-the-divergence-of-the-function-F-r-determinant-r-n-r-xi-yj-zk-determinant-r-0-vanishes-is-a-1-b-1-c-3-d-3-

Question Number 224732 by fantastic last updated on 30/Sep/25 $${The}\:{value}\:{of}\:{n}\:{for}\:{which}\:{the}\:{divergence} \\ $$$${of}\:{the}\:{function} \\ $$$$\mathrm{F}=\frac{\mathrm{r}}{\begin{vmatrix}{\mathrm{r}}\end{vmatrix}^{{n}} },\:\mathrm{r}=\mathrm{x}\hat {\mathrm{i}}+{y}\hat {\mathrm{j}}+{z}\hat {\mathrm{k}},\begin{vmatrix}{\mathrm{r}}\end{vmatrix}\neq\mathrm{0}, \\ $$$${vanishes}\:{is} \\ $$$$\left.{a}\right)\mathrm{1} \\ $$$$\left.{b}\right)−\mathrm{1} \\…

Let-f-be-a-continuously-differentiable-function-such-that-0-2x-2-f-t-dt-e-cos-x-2-for-all-x-0-the-value-of-f-pi-

Question Number 224733 by fantastic last updated on 30/Sep/25 $${Let}\:{f}\:{be}\:{a}\:{continuously}\:{differentiable}\:{function} \\ $$$${such}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}{x}^{\mathrm{2}} } {f}\left({t}\right){dt}={e}^{\mathrm{cos}\:{x}^{\mathrm{2}} } \:{for}\:{all}\:{x}\in\left(\mathrm{0},\infty\right) \\ $$$${the}\:{value}\:{of}\:{f}\:'\left(\pi\right)=? \\ $$ Answered by…

Let-u-y-2-x-2-x-2-y-2-v-z-2-y-2-y-2-z-2-for-x-0-y-0z-0-Let-w-f-u-v-where-f-is-a-real-valued-function-defined-on-R-2-having-continuous-first-order-partial-derivatives-the-value-

Question Number 224735 by fantastic last updated on 30/Sep/25 $${Let}\:{u}=\frac{{y}^{\mathrm{2}} −{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} {y}^{\mathrm{2}} },\:{v}=\frac{{z}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{y}^{\mathrm{2}} {z}^{\mathrm{2}} }\:{for}\:{x}\neq\mathrm{0},{y}\neq\mathrm{0}{z}\neq\mathrm{0}. \\ $$$${Let}\:{w}={f}\left({u},{v}\right),\:{where}\:{f}\:{is}\:{a}\:{real} \\ $$$${valued}\:{function}\:{defined}\:{on}\:{R}^{\mathrm{2}} \\ $$$${having}\:{continuous}\:{first}\:{order} \\…

z-r-cos-i-sin-find-z-z-z-z-

Question Number 224739 by thetpainghtun_111 last updated on 30/Sep/25 $$\mathrm{z}\:=\:\mathrm{r}\:\left(\mathrm{cos}\:\theta\:+\:\mathrm{i}\:\mathrm{sin}\:\theta\right),\:\mathrm{find}\:\frac{\mathrm{z}}{\overset{−} {\mathrm{z}}}\:+\frac{\overset{−} {\mathrm{z}}}{\mathrm{z}}. \\ $$ Answered by Frix last updated on 30/Sep/25 $${z}={r}\mathrm{e}^{\mathrm{i}\theta} \:\Leftrightarrow\:\bar {{z}}={r}\mathrm{e}^{−\mathrm{i}\theta} \\…

1-tan-d-

Question Number 224714 by fantastic last updated on 28/Sep/25 $$\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{tan}\:\theta}}\:{d}\theta \\ $$ Commented by Ghisom_ last updated on 29/Sep/25 $$\int\frac{{d}\theta}{\:\sqrt{\mathrm{tan}\:\theta}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\mathrm{tan}\:\theta}\:\rightarrow\:{d}\theta=\mathrm{2cos}^{\mathrm{2}} \:\theta\:\sqrt{\mathrm{tan}\:\theta}\right] \\ $$$$=\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{4}}…