Menu Close

Author: Tinku Tara

The-vectors-OP-OQ-and-OR-represented-by-a-b-and-c-respectively-where-a-10i-j-b-2i-7j-c-a-3b-and-O-is-the-origin-OR-and-PR-intersects-at-M-where-OM-kOR-and-PM-lPQ-and-k-l-are-constants-Find-

Question Number 224615 by necx122 last updated on 21/Sep/25 $${The}\:{vectors}\:{OP},\:{OQ}\:{and}\:{OR}\:{represented} \\ $$$${by}\:{a},{b}\:{and}\:{c}\:{respectively}:\:{where}\:{a}=\mathrm{10}{i}+{j}, \\ $$$${b}=−\mathrm{2}{i}+\mathrm{7}{j},\:{c}={a}+\mathrm{3}{b},\:{and}\:{O}\:{is}\:{the}\:{origin}. \\ $$$${OR}\:{and}\:{PR}\:{intersects}\:{at}\:{M}\:{where} \\ $$$${OM}={kOR}\:{and}\:{PM}={lPQ}\:{and}\:{k},\:{l}\:{are} \\ $$$${constants}.\:{Find}: \\ $$$$\left({i}\right)\:{The}\:{equation}\:{of}\:{the}\:{lines}\:{of}\:{PQ}\:{and} \\ $$$${OR} \\…

p-is-a-prime-number-prove-that-if-p-2-8-is-prime-p-3-4-is-also-prime-

Question Number 224591 by Jyrgen last updated on 22/Sep/25 $$\mathrm{p}\:{is}\:{a}\:{prime}\:{number} \\ $$$${prove}\:{that}\:{if}\:\mathrm{p}^{\mathrm{2}} +\mathrm{8}\:{is}\:{prime}\:\Rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{p}^{\mathrm{3}} +\mathrm{4}\:{is}\:{also}\:{prime} \\ $$ Answered by Ghisom_ last updated on 22/Sep/25…

Question-224592

Question Number 224592 by Nicholas666 last updated on 20/Sep/25 Commented by Nicholas666 last updated on 20/Sep/25 $$\:\:\:\:\:\mathrm{The}\:\mathrm{medians}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:{ABC}\:\:\mathrm{cut}\:\mathrm{it}\:\mathrm{into}\:\mathrm{6}\:\mathrm{triangles}.\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{centers}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circum}\:\mathrm{scribed}\:\mathrm{circles}\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\mathrm{of}\:\mathrm{these}\:\mathrm{triangles}\:\mathrm{lie}\:\mathrm{ln}\:\mathrm{the}\:\mathrm{same}\:\mathrm{circle}.\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\mathrm{How}\:\mathrm{is}\:\mathrm{this}\:\mathrm{theorem}\:\mathrm{called}? \\ $$$$…

let-I-be-the-incenter-of-a-non-isosceles-ABC-and-let-the-incircle-be-tanget-to-the-sides-point-D-E-F-the-line-AI-intersects-ABC-at-A-and-S-the-line-SD-intersect

Question Number 224594 by Nicholas666 last updated on 20/Sep/25 $$ \\ $$$$\:\:\:\:\mathrm{let}\:{I}\:\mathrm{be}\:\mathrm{the}\:\mathrm{incenter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{non}−\mathrm{isosceles}\:\:\Delta{ABC}\:\:\:\:\:\: \\ $$$$\:\:\:\:\mathrm{and}\:\mathrm{let}\:\mathrm{the}\:\mathrm{incircle}\:\mathrm{be}\:\mathrm{tanget}\:\mathrm{to}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{point}\:{D},{E},{F}.\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{line}\:{AI}\:\mathrm{intersects}\: \left({ABC}\right)\:\mathrm{at}\:{A}\:\mathrm{and}\:{S}. \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{line}\:{SD}\:\mathrm{intersects}\: \left({ABC}\right)\:\mathrm{at}\:{S}\:\mathrm{and}\:{T}.\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\mathrm{let}\:{IT}\:\cap\:{EF}\:={M},\: \left({BIC}\right)\:\cap\: \left({DEF}\right)={K},{L}. \\…

x-a-a-Z-0-a-Z-1-0-3-x-dx-

Question Number 224568 by fkwow344 last updated on 19/Sep/25 $$\sqrt{{x}}={a\begin{cases}{{a}\in\mathbb{Z}=\mathrm{0}}\\{{a}\notin\mathbb{Z}=\mathrm{1}}\end{cases}} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{3}} \:\sqrt{{x}}{dx}=? \\ $$ Commented by Ghisom_ last updated on 19/Sep/25 $$\mathrm{what}\:\mathrm{does}\:\mathrm{this}\:\mathrm{mean}? \\…