Question Number 212098 by CrispyXYZ last updated on 30/Sep/24 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{ln}\:\frac{\sqrt{\mathrm{13}}−\mathrm{1}}{\mathrm{10}}\:+\:\sqrt{\mathrm{13}}\:−\:\mathrm{2}\:>\mathrm{0} \\ $$$$\mathrm{without}\:\mathrm{calculator}. \\ $$ Answered by MrGaster last updated on 03/Nov/24 $$\mathrm{ln}\left(\sqrt{\mathrm{13}}−\mathrm{1}\right)−\mathrm{ln}\:\mathrm{10}+\sqrt{\mathrm{13}}−\mathrm{2}>\mathrm{0} \\…
Question Number 212099 by vahid last updated on 30/Sep/24 Answered by mehdee7396 last updated on 30/Sep/24 $$\int\frac{\mathrm{1}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{dx}\:\:\:\:\:;\:{let}\:\:\:{tan}\frac{{x}}{\mathrm{2}}={u} \\ $$$$=\int\frac{\mathrm{2}{u}}{\mathrm{1}−{u}^{\mathrm{2}} }{du}={ln}\frac{\mathrm{1}+{u}}{\mathrm{1}−{u}}+{c} \\ $$$$={ln}\left({tan}\left(\frac{\pi}{\mathrm{4}}+\frac{{x}}{\mathrm{2}}\right)\right)+{c}\:\:\checkmark \\…
Question Number 212093 by lhouis last updated on 29/Sep/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212094 by behi834171 last updated on 29/Sep/24 $$\left[\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}}}+…….+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1000000}}}\right]=? \\ $$$$\boldsymbol{{note}}:\:\:\:\left[\mathrm{6}.\mathrm{25}\right]=\mathrm{6}\:\:\:,\left[\mathrm{0}.\mathrm{47}\right]=\mathrm{0} \\ $$ Answered by fabricio2008 last updated on 30/Sep/24 $$\underset{{x}=\mathrm{1}} {\overset{\mathrm{10}^{\mathrm{6}} } {\sum}}\left(\sqrt{{x}}\right)^{-\mathrm{1}}…
Question Number 212084 by Spillover last updated on 28/Sep/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212052 by Spillover last updated on 28/Sep/24 Answered by Ghisom last updated on 28/Sep/24 $$\int\frac{{dx}}{\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{M}\:\mathrm{ethod}\right] \\ $$$$=−\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{1}}= \\…
Question Number 212053 by universe last updated on 28/Sep/24 $$ \\ $$$$\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\int_{\mathrm{0}} ^{\:\boldsymbol{{y}}} \:\boldsymbol{{e}}^{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} } \boldsymbol{{dx}}\right)\boldsymbol{{dy}}\:+\int_{\mathrm{1}} ^{\mathrm{2}} \left(\int_{\mathrm{0}} ^{\:\mathrm{2}−\boldsymbol{{y}}} \:\boldsymbol{{e}}^{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }…
Question Number 212085 by hardmath last updated on 28/Sep/24 $$\mathrm{a},\mathrm{b},\mathrm{c}\:\in\:\mathbb{N} \\ $$$$\mathrm{5a}\:+\:\mathrm{6b}\:+\:\mathrm{7c}\:=\:\mathrm{70} \\ $$$$\mathrm{find}:\:\:\mathrm{max}\left(\mathrm{a}\right)\:=\:? \\ $$ Commented by Frix last updated on 28/Sep/24 $$\mathrm{If}\:\mathrm{0}\in\mathbb{N}\:\Rightarrow\:\mathrm{max}\:{a}\:=\mathrm{14}\:\:\:\:\:\left({b}={c}=\mathrm{0}\right) \\…
Question Number 212048 by Spillover last updated on 28/Sep/24 Answered by Ghisom last updated on 28/Sep/24 $$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dx}}{\:\sqrt{{x}}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}}= \\ $$$$\:\:\:\:\:\left[{t}={x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right] \\…
Question Number 212049 by Spillover last updated on 28/Sep/24 Answered by Ghisom last updated on 28/Sep/24 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\:\sqrt{−\mathrm{ln}\:{x}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{−\mathrm{ln}\:{x}}\right] \\ $$$$=−\mathrm{2}\underset{\infty} {\overset{\mathrm{0}} {\int}}\mathrm{e}^{−{t}^{\mathrm{2}}…