Question Number 90318 by I want to learn more last updated on 22/Apr/20 $$\mathrm{Please}\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{resolve}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction}? \\ $$$$\:\:\:\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:\:−\:\:\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }}{\left(\mathrm{tan}\:\mathrm{x}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} } \\ $$ Terms of Service Privacy…
Question Number 90316 by M±th+et£s last updated on 22/Apr/20 $$\begin{vmatrix}{{x}}&{\mathrm{7}}\\{\mathrm{9}}&{\mathrm{8}−{x}}\end{vmatrix}=\begin{vmatrix}{\mathrm{7}}&{\mathrm{0}}&{−\mathrm{3}}\\{−\mathrm{5}}&{{x}}&{−\mathrm{6}}\\{−\mathrm{3}}&{−\mathrm{5}}&{{x}−\mathrm{9}}\end{vmatrix} \\ $$$$ \\ $$ Commented by john santu last updated on 23/Apr/20 $$\mathrm{8}{x}−{x}^{\mathrm{2}} −\mathrm{63}\:=\:\mathrm{7}\left({x}^{\mathrm{2}} −\mathrm{9}{x}−\mathrm{30}\right)−…
Question Number 155849 by mnjuly1970 last updated on 05/Oct/21 $$ \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {log}\left({sinh}\left({x}\right)\right).{log}\left({tanh}\left({x}\right)\right){dx}=\frac{\mathrm{7}\zeta\left(\mathrm{3}\right)}{\mathrm{8}}\:+\frac{\pi^{\:\mathrm{2}} }{\mathrm{8}}{ln}^{\:} \left(\mathrm{2}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 24778 by ajfour last updated on 25/Nov/17 $${Show}\:{that}\:{the}\:{shortest}\:{distance} \\ $$$${between}\:{two}\:{opposite}\:{edges}\:\boldsymbol{{a}},\boldsymbol{{d}}\: \\ $$$${of}\:{a}\:{tetrahedron}\:{is}\:\mathrm{6}\boldsymbol{{V}}/\boldsymbol{{ad}}\mathrm{sin}\:\boldsymbol{\theta}, \\ $$$${where}\:\theta\:{is}\:{the}\:{angle}\:{between}\:{the} \\ $$$${edges}\:{and}\:{V}\:{is}\:{the}\:{volume}\:{of}\:{the} \\ $$$${tetrahedron}. \\ $$ Commented by ajfour…
Question Number 90308 by Tony Lin last updated on 22/Apr/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right){dx} \\ $$ Commented by mathmax by abdo last updated on 23/Apr/20 $${I}\:=\int_{\mathrm{0}}…
Question Number 24772 by Tinkutara last updated on 25/Nov/17 $$\mathrm{The}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{points}\:{A}, \\ $$$${B}\:\mathrm{and}\:{C}\:\mathrm{is}\:\left[\mathrm{assume}\:\mathrm{all}\:\mathrm{surfaces}\:\mathrm{are}\right. \\ $$$$\left.\mathrm{smooth},\:\mathrm{pulley}\:\mathrm{and}\:\mathrm{strings}\:\mathrm{are}\:\mathrm{light}\right] \\ $$ Commented by Tinkutara last updated on 25/Nov/17 Commented by…
Question Number 90306 by Tony Lin last updated on 22/Apr/20 $$\underset{\lambda\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{−{x}} }{{x}}{dx} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 90307 by niroj last updated on 22/Apr/20 $$\:\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}. \\ $$$$\:\:\:\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{D}}^{\mathrm{2}} −\mathrm{2}\right)\boldsymbol{\mathrm{y}}\:=\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}. \\ $$ Answered by TANMAY PANACEA. last updated on 22/Apr/20…
Question Number 155842 by zainaltanjung last updated on 05/Oct/21 $$\mathrm{Prof}\:\mathrm{that}: \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\:\mathrm{n}.\mathrm{n}!=\mathrm{11}!−\mathrm{1} \\ $$ Commented by puissant last updated on 05/Oct/21 $${Q}\mathrm{155803} \\…
Question Number 90301 by zainal tanjung last updated on 22/Apr/20 $$\mathrm{Help}\:\mathrm{me} \\ $$$$ \\ $$$$\mathrm{z}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{y}.\mathrm{e}^{\frac{\mathrm{x}}{\mathrm{y}}} . \\ $$$$\mathrm{z}'_{\mathrm{x}} =…?\:\mathrm{and}\:\mathrm{z}'_{\mathrm{y}} =…? \\ $$ Commented by mathmax…