Question Number 90256 by M±th+et£s last updated on 22/Apr/20 $$\int_{\mathrm{0}} ^{\pi} \frac{{cos}\left(\mathrm{2}{x}\right)}{\left({e}^{{x}} +{cos}\left({x}\right)\right)^{\mathrm{2}} }{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90252 by ajfour last updated on 22/Apr/20 Commented by ajfour last updated on 22/Apr/20 $${If}\:{both}\:{ellipses}\:{have}\:{the}\:{same} \\ $$$${shape},\:{find},\:{b}/{a}\:.{Also}\:{find} \\ $$$${circumradius}\:{in}\:{terms}\:{of}\:{a}. \\ $$ Answered by…
Question Number 24716 by Tinkutara last updated on 25/Nov/17 $$\mathrm{A}\:\mathrm{2}.\mathrm{2}\:\mathrm{kg}\:\mathrm{block}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{rough}\:\mathrm{inclined}\:\mathrm{plane}\:\mathrm{that}\:\mathrm{makes}\:\mathrm{an} \\ $$$$\mathrm{angle}\:\mathrm{of}\:\mathrm{25}°\:\mathrm{with}\:\mathrm{the}\:\mathrm{horizontal}.\:\mathrm{The} \\ $$$$\mathrm{coefficient}\:\mathrm{of}\:\mathrm{kinetic}\:\mathrm{friction}\:\mathrm{is}\:\mathrm{0}.\mathrm{25}.\:\mathrm{As} \\ $$$$\mathrm{the}\:\mathrm{block}\:\mathrm{goes}\:\mathrm{2}\:\mathrm{m}\:\mathrm{down}\:\mathrm{the}\:\mathrm{plane},\:\mathrm{the} \\ $$$$\mathrm{mechanical}\:\mathrm{energy}\:\mathrm{of}\:\mathrm{the}\:\mathrm{Earth}-\mathrm{block} \\ $$$$\mathrm{system}\:\mathrm{changes}\:\mathrm{by} \\ $$ Answered…
Question Number 90251 by Hanumantha Rao DAMARAJU last updated on 22/Apr/20 $$\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }{\mathrm{3}!}+…….=\:??? \\ $$ Commented by MJS last updated on…
Question Number 24712 by ajfour last updated on 25/Nov/17 Commented by ajfour last updated on 25/Nov/17 $${Originally}\:{a}\:{planet}\:{of}\:{radius}\:\boldsymbol{{R}}, \\ $$$${of}\:{uniform}\:{density},\:{has}\:{a}\:{gravitational} \\ $$$${field}\:{at}\:{its}\:{surface}\:{equal}\:{to}\:\:\boldsymbol{{g}}. \\ $$$${Because}\:{a}\:{sphere}\:{of}\:{crust}\:{of} \\ $$$${radius}\:\boldsymbol{{r}}\:{is}\:{removed}\:{gravitational}…
Question Number 90246 by M±th+et£s last updated on 22/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 155776 by mathdanisur last updated on 04/Oct/21 $$\mathrm{if}\:\:\:\mathrm{x}\in\left(\mathrm{0};\frac{\pi}{\mathrm{2}}\right)\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{2}\:+\:\left(\mathrm{1}+\mathrm{cot}\boldsymbol{\mathrm{x}}\right)\left(\mathrm{tan}^{\mathrm{3}} \boldsymbol{\mathrm{x}}+\mathrm{cot}^{\mathrm{3}} \boldsymbol{\mathrm{x}}\right)}{\left(\mathrm{1}+\mathrm{tan}\boldsymbol{\mathrm{x}}\right)\left(\mathrm{1}+\mathrm{cot}\boldsymbol{\mathrm{x}}\right)}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90240 by peter frank last updated on 22/Apr/20 $${solve} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{x}\frac{{dy}}{{dx}}+{xy}={x}^{\mathrm{3}} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 24704 by math solver last updated on 25/Nov/17 Commented by math solver last updated on 25/Nov/17 $$\mathrm{sum}\:\mathrm{of}\:\mathrm{series}\:\mathrm{upto}\:'\mathrm{n}'\:\mathrm{terms}\:\mathrm{is}\:? \\ $$ Commented by prakash jain…
Question Number 155772 by daus last updated on 04/Oct/21 Answered by mr W last updated on 04/Oct/21 Commented by mr W last updated on 04/Oct/21…