Menu Close

Author: Tinku Tara

Solve-in-R-5x-5x-2-4-7-x-x-2-x-2-3x-18-2-x-

Question Number 155545 by mathdanisur last updated on 02/Oct/21 $$\mathrm{Solve}\:\mathrm{in}\:\mathbb{R} \\ $$$$\frac{\mathrm{5x}}{\:\sqrt{\mathrm{5x}^{\mathrm{2}} \:+\:\mathrm{4}}\:+\:\mathrm{7}\sqrt{\mathrm{x}}}\:+\:\frac{\mathrm{x}\:+\:\mathrm{2}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{3x}\:-\:\mathrm{18}}\:+\:\mathrm{2}\sqrt{\mathrm{x}}} \\ $$ Commented by Rasheed.Sindhi last updated on 02/Oct/21 $$=\mathrm{0}? \\…

let-a-b-c-gt-0-and-a-b-c-3-find-min-value-of-the-expression-S-abc-a-1-2-b-1-2-c-1-2-

Question Number 155547 by mathdanisur last updated on 02/Oct/21 $$\mathrm{let}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0}\:\:\mathrm{and}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3} \\ $$$$\mathrm{find}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression}: \\ $$$$\mathrm{S}\:=\:\mathrm{abc}\:+\:\left(\mathrm{a}-\mathrm{1}\right)^{\mathrm{2}} \:+\:\left(\mathrm{b}-\mathrm{1}\right)^{\mathrm{2}} \:+\:\left(\mathrm{c}-\mathrm{1}\right)^{\mathrm{2}} \\ $$ Answered by ghimisi last updated on 02/Oct/21…

n-0-2-1-2n-1-2n-1-2-

Question Number 90009 by M±th+et£s last updated on 20/Apr/20 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

f-5-4x-27x-2000-2187x-204-x-4-3x-8-f-3x-7-

Question Number 155540 by cortano last updated on 02/Oct/21 $$\:\:\mathrm{f}\left(\mathrm{5}−\mathrm{4x}\right)=\mathrm{27x}^{\mathrm{2000}} −\mathrm{2187x}^{\mathrm{204}} −\mathrm{x}^{\mathrm{4}} +\mathrm{3x}+\mathrm{8} \\ $$$$\mathrm{f}\left(\mathrm{3x}−\mathrm{7}\right)=? \\ $$ Answered by Rasheed.Sindhi last updated on 02/Oct/21 $$\mathcal{T}{o}\:{transform}\:\mathrm{5}−\mathrm{4}{x}\:{into}\:\mathrm{3}{x}−\mathrm{7}…

Let-2x-3y-4z-9-x-y-z-gt-0-then-the-maximum-value-of-1-x-2-2-y-3-4-z-4-is-

Question Number 24469 by Tinkutara last updated on 18/Nov/17 $$\mathrm{Let}\:\mathrm{2}{x}\:+\:\mathrm{3}{y}\:+\:\mathrm{4}{z}\:=\:\mathrm{9},\:{x},\:{y},\:{z}\:>\:\mathrm{0}\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{1}\:+\:{x}\right)^{\mathrm{2}} \:\left(\mathrm{2}\:+\:{y}\right)^{\mathrm{3}} \\ $$$$\left(\mathrm{4}\:+\:{z}\right)^{\mathrm{4}} \:\mathrm{is} \\ $$ Commented by sushmitak last updated on 18/Nov/17…

find-the-tylor-series-expantion-of-z-2-1-z-1-z-3-

Question Number 155542 by Engr_Jidda last updated on 02/Oct/21 $${find}\:{the}\:{tylor}\:{series}\:{expantion}\:{of}\:\frac{{z}^{\mathrm{2}} −\mathrm{1}}{\left({z}+\mathrm{1}\right)\left({z}+\mathrm{3}\right)} \\ $$ Commented by aliyn last updated on 02/Oct/21 $$\boldsymbol{{i}}\:\boldsymbol{{think}}\:\boldsymbol{{maclurin}}\:\boldsymbol{{series}}\:\boldsymbol{{but}}\:\boldsymbol{{not}}\:\boldsymbol{{tylor}}\:\boldsymbol{{series}}\:? \\ $$ Commented by…

Question-155537

Question Number 155537 by SANOGO last updated on 01/Oct/21 Answered by amin96 last updated on 01/Oct/21 $$\left.\mathrm{1}\right)\:\:{y}={x}^{{r}} \:\:\:\frac{{dy}}{{dx}}={rx}^{{r}−\mathrm{1}\:\:\:\:} \:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\:\left\{{r}^{\mathrm{2}} −{r}\right\}{x}^{{r}−\mathrm{2}} \\ $$$${x}^{\mathrm{2}} ×\left({r}^{\mathrm{2}}…