Question Number 155295 by mathdanisur last updated on 28/Sep/21 $$\mathrm{Evaluate}:\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\Sigma\:\boldsymbol{\mathrm{n}}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\:=\:? \\ $$ Commented by mathdanisur last updated on 28/Sep/21 $$\mathrm{Very}\:\mathrm{nice}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you} \\ $$ Commented…
Question Number 155294 by peter frank last updated on 28/Sep/21 Answered by peter frank last updated on 30/Sep/21 Commented by peter frank last updated on…
Question Number 89755 by naka3546 last updated on 19/Apr/20 Commented by john santu last updated on 19/Apr/20 $$\mathrm{576}\:{cm}^{\mathrm{2}} \\ $$ Answered by $@ty@m123 last updated…
Question Number 89753 by jagoll last updated on 19/Apr/20 $$\frac{\mathrm{d}}{\mathrm{dx}}\:\left(\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{16}} {\prod}}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{k}}\right)\right)\underset{\:\mathrm{x}\:=\:\mathrm{0}} {\mid}\:=\:? \\ $$ Commented by mr W last updated on 19/Apr/20 $${sorry}!\:{i}\:{misread}\:\Pi\:{as}\:\Sigma. \\…
Question Number 155285 by aliyn last updated on 28/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 89748 by jagoll last updated on 19/Apr/20 $$\mathrm{dx}\:=\:\left(\mathrm{1}+\mathrm{2xtan}\:\mathrm{y}\right)\:\mathrm{dy}\: \\ $$ Commented by mr W last updated on 19/Apr/20 $$\frac{{dx}}{{dy}}−\left(\mathrm{2}\:\mathrm{tan}\:{y}\right)\:{x}=\mathrm{1} \\ $$$$−\int\mathrm{2}\:\mathrm{tan}\:{y}\:{dy}=\mathrm{2}\int\frac{{d}\:\left(\mathrm{cos}\:{y}\right)}{\mathrm{cos}\:{y}}=\mathrm{2ln}\:\left(\mathrm{cos}\:{y}\right)=\mathrm{ln}\:\mathrm{cos}^{\mathrm{2}} \:{y} \\…
Question Number 89749 by cindiaulia last updated on 19/Apr/20 Commented by mr W last updated on 19/Apr/20 Commented by mr W last updated on 19/Apr/20…
Question Number 155281 by mnjuly1970 last updated on 28/Sep/21 $$ \\ $$$$\:{f}\::\left[\:\mathrm{0}\:,\:\:\mathrm{6}\right]\:\rightarrow\:\left[−\mathrm{4}\:,\:\mathrm{4}\right] \\ $$$$\:\:\:{f}\:\left(\mathrm{0}\:\right)=\mathrm{0} \\ $$$$\:\:\:\:{f}\:\left(\mathrm{6}\:\right)=\mathrm{4}\: \\ $$$$\:\:{x},\:\:{y}\geqslant\mathrm{0}\:\:,\:{x}+{y}\:\leqslant\mathrm{6} \\ $$$$\:\:\:{f}\:\left({x}+{y}\:\right)=\frac{\mathrm{1}}{\mathrm{4}}\left\{{f}\left({x}\right)\sqrt{\mathrm{16}−\left({f}\left({y}\right)\right)^{\mathrm{2}} }\:+{f}\left({y}\right)\sqrt{\mathrm{16}−\left({f}\left({x}\right)\right)^{\mathrm{2}} }\:\right\} \\ $$$$\:\:\therefore\:\:\:\left(\:{f}\left(\mathrm{1}\right)\:+{f}\:\left(\mathrm{3}\right)\right)^{\:\mathrm{2}} =?…
Question Number 24211 by Physics lover last updated on 14/Nov/17 Commented by Physics lover last updated on 14/Nov/17 $${The}\:{figure}\:{shows}\:{a}\:{mercury} \\ $$$${barometer}. \\ $$$${find}\:{reading}\:{of}\:{the}\:{weighing}\: \\ $$$${machine}.\:{Density}\:{of}\:{mercury}…
Question Number 89745 by jagoll last updated on 19/Apr/20 $$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{f}\left(\mathrm{x}+\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\:,\:\forall\mathrm{x}\in\:\mathbb{R} \\ $$$$\mathrm{if}\:\underset{\mathrm{0}} {\overset{\mathrm{3}\pi/\mathrm{8}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{t}\:,\:\mathrm{then}\: \\ $$$$\underset{\pi} {\overset{\mathrm{5}\pi/\mathrm{2}} {\int}}\mathrm{f}\left(\mathrm{x}−\pi\right)\:\mathrm{dx}\:=\: \\ $$$$\mathrm{A}.\:\mathrm{2t}\:\:\:\:\:\:\:\mathrm{B}.\:\mathrm{3t}\:\:\:\:\:\:\:\mathrm{C}.\:\mathrm{4t}\:\:\:\:\:\:\:\mathrm{D}.\:\mathrm{6t} \\ $$$$\mathrm{E}.\:\mathrm{8t}\: \\ $$ Commented…