Question Number 89652 by john santu last updated on 18/Apr/20 $$\mathrm{If}\:\left({y}\left({x}−{y}\right)\right)^{\mathrm{2}} \:=\:{x}\:{and}\: \\ $$$$\int\:\frac{{dx}}{\left({x}−\mathrm{3}{y}\right)}\:=\:\left(\frac{{m}}{{n}}\right)\:\mathrm{log}\:\left[\:\left({x}−{y}\right)^{\mathrm{2}} −\mathrm{1}\right] \\ $$$${then}\:{m}+\mathrm{2}{n}\:=\: \\ $$$${A}.\mathrm{1}\:\:\:\:\:{B}.\:\mathrm{3}\:\:\:\:\:\:\:\:{C}.\:\mathrm{5}\:\:\:\:\:\:\:\:\:{D}.\mathrm{7} \\ $$ Terms of Service Privacy…
Question Number 155190 by joki last updated on 26/Sep/21 $$\mathrm{an}\:\mathrm{atom}\:\mathrm{of}\:\mathrm{x}\:\mathrm{with}\:\mathrm{atomic}\:\mathrm{number}\:\mathrm{9}\:\mathrm{has}\:\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of} \\ $$$$\mathrm{18}\:\mathrm{with}\:\mathrm{an}\:\mathrm{abundsnce}\:\mathrm{of}\:\mathrm{19\%},\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{19}\:\mathrm{with} \\ $$$$\mathrm{an}\:\mathrm{abundance}\:\mathrm{of}\:\mathrm{3}.\mathrm{5\%}\:\mathrm{and}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{has}\:\mathrm{a}\: \\ $$$$\mathrm{mass}\:\mathrm{of}\:\mathrm{20}.\:\mathrm{determine}\:\mathrm{the}\:\mathrm{relative}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{atom}\:\mathrm{x}? \\ $$ Answered by physicstutes last updated on 26/Sep/21…
Question Number 89653 by student work last updated on 18/Apr/20 Commented by john santu last updated on 18/Apr/20 $$\mathrm{2}^{{x}} \:=\:{p}\:\Rightarrow\:{p}^{\mathrm{3}} \:+\:{p}\:=\:\mathrm{16}\: \\ $$$${use}\:{Cardano}\:{method}\: \\ $$…
Question Number 89649 by jagoll last updated on 18/Apr/20 $$\mathrm{If}\:\begin{pmatrix}{\mathrm{a}−\mathrm{b}\:\:\:\:\:\:\mathrm{b}+\mathrm{c}}\\{\mathrm{3d}+\mathrm{c}\:\:\:\:\:\mathrm{2c}−\mathrm{d}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{8}\:\:\:\:\mathrm{1}}\\{\mathrm{7}\:\:\:\:\mathrm{6}}\end{pmatrix} \\ $$$$\mathrm{then}\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}\:=\: \\ $$$$\mathrm{A}.\:−\frac{\mathrm{53}}{\mathrm{7}}\:\:\:\:\:\:\:\mathrm{B}.\:−\frac{\mathrm{18}}{\mathrm{7}}\:\:\:\:\:\:\:\mathrm{C}.\:\frac{\mathrm{43}}{\mathrm{7}} \\ $$$$\mathrm{D}.\:\frac{\mathrm{38}}{\mathrm{7}}\:\:\:\:\mathrm{E}.\:\frac{\mathrm{53}}{\mathrm{7}} \\ $$ Commented by jagoll last updated on 18/Apr/20…
Question Number 24111 by ajfour last updated on 12/Nov/17 Commented by ajfour last updated on 12/Nov/17 $${Solution}\:{to}\:{Q}.\:\mathrm{24100} \\ $$ Answered by ajfour last updated on…
Question Number 155180 by mathdanisur last updated on 26/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 89647 by otchereabdullai@gmail.com last updated on 18/Apr/20 Answered by mahdi last updated on 18/Apr/20 $$\frac{\mathrm{sinx}}{\mathrm{AC}}=\frac{\mathrm{sin}\left(\mathrm{120}−\mathrm{x}\right)}{\mathrm{AO}} \\ $$$$\frac{\mathrm{sin10}}{\mathrm{AO}}=\frac{\mathrm{sin150}}{\mathrm{AB}} \\ $$$$\Rightarrow\frac{\mathrm{sinx}}{\mathrm{AC}}=\frac{\mathrm{sin}\left(\mathrm{120}−\mathrm{x}\right)}{\mathrm{AB}\frac{\mathrm{sin10}}{\mathrm{sin150}}}\:\:\:\overset{\mathrm{AC}=\mathrm{AB}} {\Rightarrow}\: \\ $$$$\frac{\mathrm{sinx}}{\mathrm{sin}\left(\mathrm{120}−\mathrm{x}\right)}=\frac{\mathrm{sin150}}{\mathrm{sin10}}\Rightarrow\mathrm{x}=\mathrm{100} \\…
Question Number 155183 by mathdanisur last updated on 26/Sep/21 Answered by aleks041103 last updated on 26/Sep/21 $$\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}^{{k}} }=\frac{{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}^{{k}} }−{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}^{{k}} }}{{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}^{{k}} }}=\frac{{cos}\frac{{x}}{\mathrm{2}^{{k}−\mathrm{1}}…
Question Number 155182 by mathdanisur last updated on 26/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 89636 by jagoll last updated on 18/Apr/20 $$\int\:\frac{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{2x}}\:\mathrm{dx}\: \\ $$ Commented by M±th+et£s last updated on 18/Apr/20 $${A}=\int\frac{\mathrm{1}}{{cos}\left({x}\right)}+{tan}\left({x}\right)−{tan}\left({x}\right)\:{dx} \\ $$$$\int\frac{\mathrm{1}+{sin}\left({x}\right)}{{cos}\left({x}\right)}{dx}−\int\frac{{sin}\left({x}\right)}{{cos}\left({x}\right)}{dx} \\ $$$$\int\frac{{cos}\left({x}\right)}{\mathrm{1}−{sin}\left({x}\right)}{dx}−\int\frac{{sin}\left({x}\right)}{{cos}\left({x}\right)}{dx} \\…