Menu Close

Author: Tinku Tara

The-distance-between-point-P-lat-65-S-long-25-E-and-Q-lat-65-S-long-X-on-the-earth-surface-along-the-parallel-of-latitute-is-2502-5-km-If-pi-22-2-and-earth-radius-is-6370-km-find-the-t

Question Number 24100 by tawa tawa last updated on 12/Nov/17 $$\mathrm{The}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{point}\:\:\mathrm{P}\left(\mathrm{lat}\:\mathrm{65}°\mathrm{S},\:\:\mathrm{long}\:\mathrm{25}°\mathrm{E}\right)\:\mathrm{and}\:\mathrm{Q}\left(\mathrm{lat}\:\mathrm{65}°\mathrm{S},\:\mathrm{long}\:\mathrm{X}\right) \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{surface}\:\mathrm{along}\:\mathrm{the}\:\mathrm{parallel}\:\mathrm{of}\:\mathrm{latitute}\:\mathrm{is}\:\:\mathrm{2502}.\mathrm{5}\:\mathrm{km}.\:\mathrm{If}\:\:\pi\:=\:\frac{\mathrm{22}}{\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{earth}\:\mathrm{radius}\:\mathrm{is}\:\:\mathrm{6370}\:\mathrm{km},\:\mathrm{find}\:\mathrm{the}\:\mathrm{two}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}. \\ $$ Commented by tawa tawa last updated on 12/Nov/17…

Question-155165

Question Number 155165 by SANOGO last updated on 26/Sep/21 Answered by aleks041103 last updated on 26/Sep/21 $$\int_{\mathrm{0}} ^{\:{x}} \left({x}−{t}\right){f}'\left({t}\right){dt}=\int_{\mathrm{0}} ^{\:{x}} \left({x}−{t}\right){df}= \\ $$$$=\left({x}−{t}\right){f}\left({t}\right)\mid_{\mathrm{0}} ^{{x}} +\int_{\mathrm{0}}…

solve-x-2-x-3-x-Z-

Question Number 155164 by mnjuly1970 last updated on 26/Sep/21 $$\:\:\:{solve}.. \\ $$$$\:\:\:\:\:\:\:\:\:\lfloor\:\frac{\:{x}}{\mathrm{2}+\:\sqrt{{x}}}\:\rfloor\:=\:\mathrm{3}\:\:\:\:\:\:\:\:\left(\:{x}\in\:\mathbb{Z}\:\right) \\ $$$$ \\ $$ Answered by MJS_new last updated on 26/Sep/21 $$\frac{{x}}{\mathrm{2}+\sqrt{{x}}}=\mathrm{3}\:\Rightarrow\:{x}\approx\mathrm{19}.\mathrm{11} \\…

Q1-find-tow-power-series-solutions-of-the-given-D-E-about-x-0-y-2xy-y-0-Q2-use-the-power-series-method-to-solve-the-given-intial-value-problem-y-2xy-8y-0-y-0-3y-0-0-

Question Number 89624 by M±th+et£s last updated on 18/Apr/20 $$\left.{Q}\mathrm{1}\right){find}\:{tow}\:{power}\:{series}\:{solutions}\:{of}\:{the}\: \\ $$$${given}\:{D}.{E}\:{about}\:{x}=\mathrm{0} \\ $$$${y}^{''} −\mathrm{2}{xy}^{'} +{y}=\mathrm{0} \\ $$$$ \\ $$$$\left.{Q}\mathrm{2}\right){use}\:{the}\:{power}\:{series}\:{method}\:\:{to}\:{solve}\:{the} \\ $$$${given}\:{intial}\:{value}\:{problem} \\ $$$${y}^{''} −\mathrm{2}{xy}^{'}…