Question Number 89322 by I want to learn more last updated on 16/Apr/20 $$\int\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{1}\:+\:\mathrm{5}^{\mathrm{x}} }\:\mathrm{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 89320 by peter frank last updated on 16/Apr/20 Commented by Rio Michael last updated on 16/Apr/20 $$\mathrm{it}\:\mathrm{means}\:\mathrm{the}\:\mathrm{planet}\:\mathrm{has}\:\mathrm{to}\:\mathrm{be}\:\mathrm{the}\:\mathrm{dorminate}\:\mathrm{gravitational} \\ $$$$\mathrm{body}\:\mathrm{on}\:\mathrm{its}\:\mathrm{orbit}\:\mathrm{round}\:\mathrm{the}\:\mathrm{sun},\:\mathrm{basically}\:\mathrm{it}\:\mathrm{has}\:\mathrm{to}\:\mathrm{send}\:\mathrm{out} \\ $$$$\mathrm{all}\:\mathrm{bodies}\:\mathrm{from}\:\mathrm{its}\:\mathrm{orbit}. \\ $$…
Question Number 23785 by tawa tawa last updated on 06/Nov/17 $$\mathrm{A}\:\mathrm{function}\:\mathrm{f}\:\mathrm{is}\:\mathrm{define}\:\mathrm{by}\:\:\mathrm{f}\::\:\rightarrow\:\mathrm{3}\:−\:\mathrm{2sinx},\:\:\mathrm{for}\:\:\mathrm{0}\:\leqslant\:\mathrm{x}\:\leqslant\:\mathrm{360} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\:\mathrm{f} \\ $$ Answered by mrW1 last updated on 06/Nov/17 $$\mathrm{sin}\:{x}\in\left[−\mathrm{1},+\mathrm{1}\right] \\ $$$${f}=\mathrm{3}−\mathrm{2sin}\:{x}\:\in\left[\mathrm{1},\mathrm{5}\right]…
Question Number 154853 by peter frank last updated on 22/Sep/21 Answered by peter frank last updated on 23/Sep/21 Commented by peter frank last updated on…
Question Number 89318 by M±th+et£s last updated on 16/Apr/20 $$\int\frac{{dx}}{{sin}^{\mathrm{3}} \left(\mathrm{2}{x}\right)+{cos}^{\mathrm{3}} \left(\mathrm{2}{x}\right)} \\ $$ Answered by MJS last updated on 16/Apr/20 $$\int\frac{{dx}}{\mathrm{sin}^{\mathrm{3}} \:\mathrm{2}{x}\:+\mathrm{cos}^{\mathrm{3}} \:\mathrm{2}{x}}= \\…
Question Number 89319 by Rio Michael last updated on 16/Apr/20 $$\:\mathrm{A}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{O}\:\mathrm{with}\:\mathrm{an}\:\mathrm{initial} \\ $$$$\mathrm{velocity}\:{u}\:\mathrm{and}\:\mathrm{angle}\:\theta\:\mathrm{with}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{ground}. \\ $$$$\:\mathrm{Given}\:\mathrm{that}\:\mathrm{it}\:\mathrm{travels}\:\mathrm{such}\:\mathrm{that}\:\mathrm{it}\:\mathrm{just}\:\mathrm{clears}\:\mathrm{two}\:\mathrm{walls} \\ $$$$\mathrm{of}\:\mathrm{height}\:{h}\:\mathrm{and}\:\mathrm{distances}\:\mathrm{2}{h}\:\mathrm{and}\:\mathrm{4}{h}\:\mathrm{from}\:\mathrm{O}\:\mathrm{respectively}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle}\:\theta \\ $$$$\:\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{time}\:\mathrm{of}\:\mathrm{flight}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{The}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball}. \\ $$…
Question Number 89316 by abdomathmax last updated on 16/Apr/20 $${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\:\frac{\mathrm{2}{n}+\mathrm{1}}{\left({n}−\mathrm{1}\right)^{\mathrm{3}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 23781 by alibhar last updated on 06/Nov/17 $${P}\left({X}=\mathrm{299}\right),\:\mu=\mathrm{318},\:{standard}\:{deviation}=\mathrm{42} \\ $$$${P}\left({z}=\frac{\mathrm{299}−\mathrm{318}}{\mathrm{42}}\right) \\ $$$${P}\left({z}=−\mathrm{0}.\mathrm{45}\right) \\ $$$$ \\ $$$${Is}\:{it}\:{P}\left({z}=−\mathrm{0}.\mathrm{45}\right)={P}\left(−\mathrm{0}.\mathrm{45}<{z}<−\mathrm{0}.\mathrm{44}\right)? \\ $$$$ \\ $$$${If}\:{not},\:{how}\:{to}\:{find}\:{P}\left({z}=−\mathrm{0}.\mathrm{45}\right)? \\ $$ Terms…
Question Number 154854 by peter frank last updated on 22/Sep/21 Commented by Tawa11 last updated on 22/Sep/21 $$\mathrm{nice} \\ $$ Answered by mr W last…
Question Number 89317 by abdomathmax last updated on 16/Apr/20 $${find}\:\int\:\:\:\:\:\frac{{dx}}{\left({x}+\sqrt{{x}−\mathrm{1}}\right)^{\mathrm{2}} } \\ $$ Commented by mathmax by abdo last updated on 17/Apr/20 $${parametric}\:{method}\:{let}\:{f}\left({a}\right)\:=\int\:\frac{{dx}}{{a}+{x}+\sqrt{{x}−\mathrm{1}}} \\ $$$${we}\:{have}\:{f}^{'}…