Question Number 154849 by naka3546 last updated on 22/Sep/21 $${ax}\:+\:{y}\:+\:{z}\:=\:\mathrm{1} \\ $$$${x}\:+\:{ay}\:+\:{z}\:=\:{a} \\ $$$${x}\:+\:{y}\:+\:{az}\:=\:{a}^{\mathrm{2}} \\ $$$${Find}\:\:{value}\:\:{of}\:\:{x},\:{y},\:{z}\:\:\:{in}\:\:{a}\:. \\ $$ Answered by Mr.D.N. last updated on 24/Sep/21…
Question Number 89314 by abdomathmax last updated on 16/Apr/20 $${calculate}\:\int\int_{{D}} \:{x}^{\mathrm{2}} \sqrt{{x}+{y}}{dxdy}\:{with}\:{D}\:{is}\:{the}\:{triangle} \\ $$$$\mathrm{0}\:{A}\:{B}\:\:\:\left(\mathrm{0}\:{origin}\right)\:\:\:{A}\left(\mathrm{1},\mathrm{0}\right)\:\:\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$ Commented by abdomathmax last updated on 18/Apr/20 $${the}\:{equation}\:{of}\:{line}\:\left({AB}\right)\:{is}\:{x}+{y}=\mathrm{1}\:\Rightarrow{y}=\mathrm{1}−{x}\:\Rightarrow \\…
Question Number 89315 by abdomathmax last updated on 16/Apr/20 $${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\frac{{arctan}\left({xy}\right)}{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 154851 by peter frank last updated on 22/Sep/21 Commented by peter frank last updated on 22/Sep/21 $$\mathrm{at}\:\mathrm{U}_{\mathrm{o}} ^{\mathrm{2}} \:\mathrm{m}/\mathrm{s}\:. \\ $$ Commented by…
Question Number 89312 by abdomathmax last updated on 16/Apr/20 $${calculate}\:\int\int_{{D}} \:{xe}^{−{x}} {siny}\:{dy}\:{with}\:{D}\:{is}\:{the}\:{triangle} \\ $$$${OAB}\:\:\:\:{O}\left(\mathrm{0},\mathrm{0}\right)\:\:{A}\left(\mathrm{1},\mathrm{0}\right)\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$ Commented by mathmax by abdo last updated on 17/Apr/20…
Question Number 23777 by anoop7760@gmail.com last updated on 06/Nov/17 $${please}\:{solve}\:{question}\:{no}\:\mathrm{23764}\:{and}\:\mathrm{23765} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 89313 by abdomathmax last updated on 16/Apr/20 $${find}\:{the}\:{sum}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} ×\mathrm{3}^{{n}} } \\ $$ Commented by mathmax by abdo last updated on 19/Apr/20…
Question Number 89311 by nimnim last updated on 16/Apr/20 $$\:\:{Show}\:{that} \\ $$$$\underset{\:\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\mathrm{1}} {\int}}\left\{\underset{\:\:\:\:\mathrm{0}} {\overset{\:\:\:\mathrm{1}} {\int}}\frac{{x}−{y}}{\left({x}+{y}\right)^{\mathrm{2}} }{dy}\right\}{dx}=\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\mathrm{1}} {\int}}\left\{\underset{\:\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\mathrm{1}} {\int}}\frac{{x}−{y}}{\left({x}+{y}\right)^{\mathrm{2}} }{dx}\right\}{dy} \\ $$$$ \\…
Question Number 23773 by FilupES last updated on 06/Nov/17 $$\mathrm{I}\:\mathrm{have}\:\mathrm{a}\:\mathrm{leaderboard}\:\mathrm{with}\:\mathrm{the}\:\mathrm{data}\:\mathrm{of}\:'\mathrm{runners}'. \\ $$$$\mathrm{Each}\:\mathrm{runner}\:\mathrm{has}\:\mathrm{a}\:'\mathrm{place}'\:\left(\mathrm{1st},\:\mathrm{2nd},\:\mathrm{etc}.\right), \\ $$$$\mathrm{and}\:\mathrm{a}\:'\mathrm{time}'\:\left(\mathrm{in}\:\mathrm{seconds}\right). \\ $$$$\: \\ $$$$\mathrm{Every}\:\mathrm{day}\:\mathrm{I}\:\mathrm{have}\:\mathrm{been}\:\mathrm{comparing}\:\mathrm{the}\:\mathrm{data}. \\ $$$$\mathrm{What}\:\mathrm{information}\:\mathrm{is}\:\mathrm{important}\:\mathrm{to}\:\mathrm{note}\:\mathrm{when} \\ $$$$\mathrm{looking}\:\mathrm{at}\:\mathrm{data}\:\mathrm{such}\:\mathrm{as}\:\mathrm{this}? \\ $$$$\: \\…
Question Number 154846 by SANOGO last updated on 22/Sep/21 $${y}'=\frac{{y}\:{cos}\left({x}\right)}{\mathrm{1}+\mathrm{2}{y}^{\mathrm{2}} } \\ $$$${trouve}\:{la}\:{solution}\:{de}\:{lequation}\:{differentielle} \\ $$ Commented by tabata last updated on 22/Sep/21 $$\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}\:=\:\frac{\boldsymbol{{y}}}{\mathrm{1}+\mathrm{2}\boldsymbol{{y}}^{\mathrm{2}} }\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\: \\…