Menu Close

Author: Tinku Tara

k-0-4-k-k-k-

Question Number 154824 by talminator2856791 last updated on 21/Sep/21 $$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{4}^{−{k}} \Gamma\left({k}\right)}{{k}!} \\ $$$$\: \\ $$ Answered by Ar Brandon last updated…

1-2-x-3-1-

Question Number 23752 by pombekali last updated on 05/Nov/17 $$\int_{\mathrm{1}} ^{\mathrm{2}} {x}^{\mathrm{3}} +\mathrm{1}=? \\ $$ Answered by Joel577 last updated on 05/Nov/17 $$\left[\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{4}} \:+\:{x}\right]_{\mathrm{1}} ^{\mathrm{2}}…

Question-23748

Question Number 23748 by mrW1 last updated on 05/Nov/17 Commented by mrW1 last updated on 05/Nov/17 $$\mathrm{The}\:\mathrm{same}\:\mathrm{question}\:\mathrm{as}\:\mathrm{Q23707}, \\ $$$$\mathrm{but}\:\mathrm{the}\:\mathrm{pulley}\:\mathrm{C}\:\mathrm{has}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{1}\:\mathrm{kg}\:\mathrm{and} \\ $$$$\mathrm{radius}\:\mathrm{5}\:\mathrm{cm}. \\ $$ Answered by…

Question-89281

Question Number 89281 by ajfour last updated on 16/Apr/20 Commented by ajfour last updated on 17/Apr/20 $${Both}\:{parabolas}\:{have}\:{same}\:{shape}. \\ $$$${If}\:{equation}\:{of}\:{one}\:{is}\:{y}={x}^{\mathrm{2}} , \\ $$$${and}\:{the}\:{inscribed}\:{triangle}\:{is} \\ $$$${eqiuilateral},\:{find}\:{the}\:{eq}.\:{of}\:{the} \\…

1-i-2-i-

Question Number 23741 by hassaneinsultan last updated on 04/Nov/17 $$\left(\mathrm{1}+{i}\right)\left(\mathrm{2}+{i}\right) \\ $$ Answered by Joel577 last updated on 05/Nov/17 $$=\:\mathrm{2}\:+\:{i}\:+\:\mathrm{2}{i}\:+\:{i}^{\mathrm{2}} \\ $$$$=\:\mathrm{2}\:+\:\mathrm{3}{i}\:−\:\mathrm{1} \\ $$$$=\:\mathrm{1}\:+\:\mathrm{3}{i} \\…

Question-23739

Question Number 23739 by ajfour last updated on 04/Nov/17 Commented by ajfour last updated on 04/Nov/17 $${If}\:{system}\:{of}\:{pair}\:{of}\:{rods}\:{shown} \\ $$$${is}\:{released}\:{at}\:{rest}\:{when}\:\theta_{\mathrm{0}} =\phi_{\mathrm{0}} =\frac{\pi}{\mathrm{4}}\:; \\ $$$${find}\:\phi\:{as}\:{a}\:{function}\:{of}\:\theta\:{a}\:{little} \\ $$$${later}\:\left({till}\:{smaller}\:{rod}\:{is}\:{in}\:{contact}\right.…