Question Number 154758 by mathdanisur last updated on 21/Sep/21 $$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}}{\mathrm{1}\:+\:\mathrm{xy}}\:\leqslant\:\sqrt{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 23683 by tawa tawa last updated on 03/Nov/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 23682 by tawa tawa last updated on 03/Nov/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 154749 by hakimy last updated on 21/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 23679 by math solver last updated on 03/Nov/17 Answered by ajfour last updated on 03/Nov/17 $$\left({B}\right)\:\mathrm{2}:\mathrm{3} \\ $$ Commented by math solver last…
Question Number 154748 by imjagoll last updated on 21/Sep/21 Answered by ARUNG_Brandon_MBU last updated on 21/Sep/21 $$\mathrm{sin}\left(\mathrm{3log}_{\left(\mathrm{2sin}{x}\right)} \sqrt[{\mathrm{3}}]{\pi}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\mathrm{log}_{\left(\mathrm{2sin}{x}\right)} \pi=\frac{\pi}{\mathrm{6}} \\ $$$$\Rightarrow\mathrm{log}_{\pi} \left(\mathrm{2sin}{x}\right)=\frac{\mathrm{6}}{\pi}\:\Rightarrow\mathrm{sin}{x}=\frac{\mathrm{1}}{\mathrm{2}}\pi^{\frac{\mathrm{6}}{\pi}} \\ $$$$\Rightarrow{x}=\mathrm{arcsin}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi^{\frac{\mathrm{6}}{\pi}} \right)…
Question Number 23677 by Anoop kumar last updated on 03/Nov/17 $${solve} \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\underset{{x}\rightarrow{inf}+} {\mathrm{li}{m}}\:\:\underset{\mathrm{2}{sin}\frac{\mathrm{1}}{{x}}} {\int}^{\mathrm{2}\sqrt{{x}}} \frac{\mathrm{2}{t}^{\mathrm{4}} +\mathrm{1}}{\left({t}−\mathrm{3}\right)\left({t}^{\mathrm{3}} +\mathrm{3}\right)}\:{dt} \\ $$ Terms of Service…
Question Number 89213 by cindiaulia last updated on 16/Apr/20 $$\int\frac{\sqrt{\mathrm{tan}\:\mathrm{x}\:+\:\mathrm{1}}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}} \\ $$ Answered by $@ty@m123 last updated on 16/Apr/20 $$\int\sqrt{\mathrm{tan}\:\mathrm{x}\:+\:\mathrm{1}}\:.\mathrm{sec}\:^{\mathrm{2}} {xdx} \\ $$$$\int\sqrt{\mathrm{1}+{t}}{dt}\:,\:\:{t}=\mathrm{tan}\:{x} \\…
Question Number 154741 by ajfour last updated on 21/Sep/21 $${I}\:{danced},\:{its}\:{a}\:{bit}\:{calculus}\:{based}! \\ $$$${I}\:{am}\:{all}\:{praises}\:{for}\:{Caro}\: \\ $$$${Emerald}'{s}\:{songs}. \\ $$ Commented by ajfour last updated on 21/Sep/21 https://youtu.be/OMZPFFTU-T4 Commented…
Question Number 154740 by pete last updated on 21/Sep/21 $$\mathrm{A}\:\mathrm{man}\:\mathrm{will}\:\mathrm{be}\:\left({x}+\mathrm{10}\right)\:\mathrm{years}\:\mathrm{in}\:\mathrm{8}\:\mathrm{years}\:\mathrm{time}. \\ $$$$\mathrm{If}\:\mathrm{2}\:\mathrm{years}\:\mathrm{ago}\:\mathrm{he}\:\mathrm{was}\:\mathrm{63}\:\mathrm{years},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:{x}. \\ $$ Answered by talminator2856791 last updated on 21/Sep/21 $$\: \\…