Menu Close

Author: Tinku Tara

Let-ABC-be-a-triangle-with-AB-AC-and-BAC-30-Let-A-be-the-reflection-of-A-in-the-line-BC-B-be-the-reflection-of-B-in-the-line-CA-C-be-the-reflection-of-C-in-the-line-AB-Show-that-A-B-C

Question Number 23592 by Tinkutara last updated on 02/Nov/17 $$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:{AB}\:=\:{AC} \\ $$$$\mathrm{and}\:\angle{BAC}\:=\:\mathrm{30}°.\:\mathrm{Let}\:{A}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{A}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{BC};\:{B}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{B}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{CA};\:{C}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{C}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{AB}.\:\mathrm{Show}\:\mathrm{that}\:{A}',\:{B}',\:{C}' \\ $$$$\mathrm{form}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral} \\ $$$$\mathrm{triangle}. \\ $$ Answered…

Question-154661

Question Number 154661 by physicstutes last updated on 20/Sep/21 Answered by mr W last updated on 20/Sep/21 $${x}={d}\:\mathrm{cos}\:\phi={v}_{{i}} \mathrm{cos}\:\theta_{{i}} {t}\:\:\:…\left(\mathrm{1}\right) \\ $$$${y}={d}\:\mathrm{sin}\:\phi={v}_{{i}} \mathrm{sin}\:\theta_{{i}} {t}−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \:\:\:…\left(\mathrm{2}\right)…

cos-2x-sec-x-cos-2-x-dx-

Question Number 89123 by john santu last updated on 15/Apr/20 $$\int\:\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{sec}\:{x}−\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx}\:? \\ $$ Commented by MJS last updated on 15/Apr/20 $$\mathrm{Weierstrass}\:\mathrm{leads}\:\mathrm{to} \\ $$$$−\int\frac{{t}^{\mathrm{6}} −\mathrm{7}{t}^{\mathrm{4}}…