Question Number 154573 by liberty last updated on 19/Sep/21 Commented by ARUNG_Brandon_MBU last updated on 19/Sep/21 $$−\frac{\mathrm{1}}{\mathrm{6}}<{x}<\frac{\mathrm{1}}{\mathrm{3}} \\ $$ Answered by ARUNG_Brandon_MBU last updated on…
Question Number 89038 by M±th+et£s last updated on 14/Apr/20 $${solve} \\ $$$${log}_{{x}} \left({x}−\mathrm{3}\right)={log}_{{x}} \left(\mathrm{5}−{x}\right) \\ $$ Answered by mahdi last updated on 14/Apr/20 $$\Rightarrow\mathrm{x}−\mathrm{3}=\mathrm{5}−\mathrm{x}\Rightarrow\mathrm{x}=\mathrm{4} \\…
Question Number 89032 by M±th+et£s last updated on 14/Apr/20 $${find}\:{by}\:{using}\:{de}\:{moivre}'{s}\:{formula} \\ $$$${cos}\left(\mathrm{2}°\right)=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 89033 by M±th+et£s last updated on 14/Apr/20 Answered by ajfour last updated on 15/Apr/20 $${let}\:{center}\:{of}\:{square}\:{be}\:{origin}. \\ $$$${eq}.\:{of}\:{left}\:{circle}: \\ $$$$\left({x}+\frac{{r}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${let}\:{side}\:{of}\:{square}=\mathrm{2}{s}…
Question Number 89029 by Jidda28 last updated on 14/Apr/20 Commented by MJS last updated on 14/Apr/20 $${t}=\sqrt[{\mathrm{4}}]{\mathrm{tan}\:{x}}\:\mathrm{or}\:{t}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{\mathrm{tan}\:{x}}}\:\mathrm{and}\:\mathrm{then}\:\mathrm{decompose} \\ $$$$\frac{{f}\left({t}\right)}{{t}^{\mathrm{8}} +\mathrm{1}}\:\mathrm{which}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{no}\:\mathrm{fun}\:\mathrm{dealing} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{factors} \\ $$ Terms…
Question Number 23492 by ajfour last updated on 31/Oct/17 Commented by ajfour last updated on 31/Oct/17 $$\:\:\:\:\:\:\:{Find}\:{the}\:{period}\:{of}\:{small}\: \\ $$$$\:\:\:\:\:{oscillations}\:{of}\:{the}\:{disc},\:{if} \\ $$$$\:\:\:\:\:\:{springs}\:{are}\:{attached}\:{at}\:{a}\: \\ $$$$\:\:\:\:\:\:\:\:{distance}\:{of}\:\boldsymbol{{a}}\:{from}\:{the} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{frictionless}\:{hinge}.…
Question Number 154561 by amin96 last updated on 19/Sep/21 Answered by liberty last updated on 19/Sep/21 $$\frac{\mathrm{3}}{\mathrm{4}} \\ $$ Commented by amin96 last updated on…
Question Number 23489 by Tinkutara last updated on 31/Oct/17 $$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{wire}\:\mathrm{frame}\:{ABCD}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{vertical}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a}\:\mathrm{constant} \\ $$$$\mathrm{acceleration}\:{a}\:\mathrm{into}\:\mathrm{the}\:\mathrm{plane}.\:\mathrm{Direction} \\ $$$$\mathrm{of}\:\mathrm{gravity}\:\mathrm{is}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{figure}.\:\mathrm{A}\:\mathrm{collar} \\ $$$$\mathrm{can}\:\mathrm{move}\:\mathrm{on}\:\mathrm{wire}\:{AC}\:\mathrm{of}\:\mathrm{length}\:{l}. \\ $$$$\mathrm{Coefficient}\:\mathrm{of}\:\mathrm{friction}\:\mathrm{between}\:\mathrm{wire} \\ $$$$\mathrm{and}\:\mathrm{collar}\:\mathrm{is}\:\mu.\:\mathrm{Find} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{acceleration}\:{a}\:\mathrm{so}\:\mathrm{that} \\…
Question Number 89025 by M±th+et£s last updated on 14/Apr/20 $$\int\frac{\mathrm{3}^{{x}} +\mathrm{4}^{{x}} }{\mathrm{5}^{{x}} }{dx} \\ $$ Answered by $@ty@m123 last updated on 14/Apr/20 $$\int\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{x}} {dx}+\int\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{{x}} {dx}…
Question Number 23488 by lakshmikarreddyavulla56@gmail. last updated on 31/Oct/17 $${area}\:{of}\:{a}\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com