Question Number 23433 by gopikrishnan005@gmail.com last updated on 30/Oct/17 $$\int_{\mathrm{0}} ^{\infty} {X}^{\mathrm{6}} {e}^{−{x}/\mathrm{2}} {dx}= \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 23432 by gopikrishnan005@gmail.com last updated on 30/Oct/17 $$\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}= \\ $$ Answered by Joel577 last updated on 31/Oct/17 $$\mathrm{Let}\:{F}\left({x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{anti}\:\mathrm{derivative}\:\mathrm{of}\:{f}\left({x}\right) \\ $$$${I}\:=\:\underset{\mathrm{0}} {\overset{{a}}…
Question Number 23431 by gopikrishnan005@gmail.com last updated on 30/Oct/17 $${If}\:{X}\:{is}\:{a}\:{discrete}\:{random}\:{variable}\:{then}\:{p}\left({X}\geqslant{a}\right)= \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 88967 by ajfour last updated on 14/Apr/20 Commented by ajfour last updated on 14/Apr/20 $${A}\:{stick}\:{of}\:{length}\:\mathrm{2}{r}\:{slides}\: \\ $$$${against}\:{a}\:{fixed}\:{smooth}\:{cylindrical} \\ $$$${surface}.\:{It}\:{is}\:{released}\:{with}\:{one} \\ $$$${at}\:{A}\:\left({in}\:{tangential}\:{manner}\right), \\ $$$${and}\:{loses}\:{contact}\:{thereafter}\:{at}…
Question Number 23429 by gopikrishnan005@gmail.com last updated on 30/Oct/17 $${An}\:{asymptote}\:{to}\:{the}\:{curve}\:{y}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)={x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)\:{is} \\ $$ Commented by FilupES last updated on 31/Oct/17 $${y}^{\mathrm{2}} =\frac{{x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{\left(\mathrm{1}+{x}\right)} \\…
Question Number 23428 by gopikrishnan005@gmail.com last updated on 30/Oct/17 $${the}\:{curve}\:{ay}^{\mathrm{2}} ={x}^{\mathrm{2}} \left(\mathrm{3}{a}−{x}\right)\:{cuts}\:{the}\:{y}-{axis}\:{at} \\ $$ Answered by $@ty@m last updated on 30/Oct/17 $${orogin} \\ $$ Answered…
Question Number 154497 by mathdanisur last updated on 18/Sep/21 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}: \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\:\:\mathrm{2}\:\sqrt{\mathrm{2x}^{\mathrm{3}} \:-\:\mathrm{x}}\:=\:\mathrm{3x}^{\mathrm{2}} \:-\:\mathrm{3x}\:+\:\mathrm{2} \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\:\:\:\sqrt{\frac{\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{16}}{\mathrm{2}}}\:+\:\sqrt{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{4}\right)}\:=\:\mathrm{3x}\:+\:\mathrm{2} \\ $$ Answered by ARUNG_Brandon_MBU last updated…
Question Number 88963 by Zainal Arifin last updated on 14/Apr/20 $$\mathrm{How}\:\mathrm{far}\:\mathrm{can}\:\mathrm{a}\:\mathrm{cyclist}\:\mathrm{travel}\:\mathrm{in}\:\mathrm{4}\:\mathrm{h} \\ $$$$\mathrm{if}\:\mathrm{his}\:\mathrm{average}\:\mathrm{speed}\:\mathrm{is}\:\mathrm{11}.\mathrm{5}\:\mathrm{km}/\mathrm{h}\:? \\ $$ Commented by MJS last updated on 14/Apr/20 $$\mathrm{seriously}? \\ $$$$…\mathrm{ok}:…
Question Number 23426 by ajfour last updated on 30/Oct/17 $${just}\:{a}\:{silly}\:{question}: \\ $$$${write}\:{a}\:{correct}\:{maths}\:{equation} \\ $$$${using}\:{only}\:{symbols}\:{below}.\:{Each} \\ $$$${must}\:{be}\:{used}\:{and}\:{only}\:{once}. \\ $$$$\:\:\:\:\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5},\:=,\:+ \\ $$ Answered by Joel577 last updated…
Question Number 23425 by Bruce Lee last updated on 30/Oct/17 $$\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}>\mathrm{0}\:\Rightarrow\frac{\boldsymbol{{a}}^{\mathrm{3}} +\boldsymbol{{b}}^{\mathrm{3}} +\boldsymbol{{c}}^{\mathrm{3}} }{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)\left(\boldsymbol{{c}}+\boldsymbol{{a}}\right)}\geqslant\frac{\mathrm{3}}{\mathrm{8}}\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com