Menu Close

Author: Tinku Tara

In-the-expansion-1-1-2-x-n-the-coefficient-of-x-m-is-5-4-times-the-coefficient-of-x-m-1-a-Show-that-5n-13m-8-b-If-m-and-n-are-positive-integers-such-that-m-n-determine-the-smalles

Question Number 154225 by ZiYangLee last updated on 15/Sep/21 $$\mathrm{In}\:\mathrm{the}\:\mathrm{expansion}\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{x}\right)^{{n}} ,\:\mathrm{the}\:\mathrm{coefficient} \\ $$$$\mathrm{of}\:{x}^{{m}} \:\mathrm{is}\:\frac{\mathrm{5}}{\mathrm{4}}\:\mathrm{times}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{m}+\mathrm{1}} . \\ $$$$\left.{a}\right)\:\mathrm{Show}\:\mathrm{that}\:\mathrm{5}{n}−\mathrm{13}{m}=\mathrm{8} \\ $$$$\left.{b}\right)\:\mathrm{If}\:{m}\:\mathrm{and}\:{n}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers},\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:{m}\leqslant{n},\:\mathrm{determine}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{values}\:\mathrm{of} \\ $$$$\:\:\:\:\:{m}\:\mathrm{and}\:{n}. \\ $$…

Question-88690

Question Number 88690 by jagoll last updated on 12/Apr/20 Answered by john santu last updated on 12/Apr/20 $${i}\:{guess}\:{the}\:{pola}\:{in}\:{question} \\ $$$$\left[\:\left(\mathrm{3}+\mathrm{1}\right)×\mathrm{3}\right]^{\mathrm{2}} \:=\:\mathrm{12}^{\mathrm{2}} \:=\:\mathrm{144} \\ $$$$\left[\:\left(\mathrm{4}+\mathrm{1}\right)×\mathrm{4}\:\right]^{\mathrm{3}} \:=\:\mathrm{20}^{\mathrm{3}}…

Given-i-t-25cos-t-u-t-50-1-t-2-2-t-4-4-t-6-6-1-T-0-T-u-t-i-t-dt-choose-the-correct-answer-a-225-b-425-c-625-d-an-other-one-

Question Number 154226 by mathocean1 last updated on 15/Sep/21 $${Given}\:{i}\left({t}\right)=\mathrm{25}{cos}\left(\omega{t}\right)\:; \\ $$$${u}\left({t}\right)=\mathrm{50}\left[\mathrm{1}+\left(\omega{t}\right)^{\frac{\mathrm{2}}{\mathrm{2}!}} +\left(\omega{t}\right)^{\frac{\mathrm{4}}{\mathrm{4}!}} +\left(\omega{t}\right)^{\frac{\mathrm{6}}{\mathrm{6}!}} +…\right]\:. \\ $$$$\frac{\mathrm{1}}{{T}}\underset{\mathrm{0}} {\overset{{T}} {\int}}{u}\left({t}\right)×{i}\left({t}\right){dt}=??? \\ $$$${choose}\:{the}\:{correct}\:{answer}: \\ $$$${a}.\:\mathrm{225} \\ $$$${b}.\:\mathrm{425}…

0-1-x-i-1-1-x-dx-ln-1-x-x-i-1-0-1-1-i-0-1-x-i-ln-1-x-dx-1-i-0-1-n-1-x-n-i-n-dx-1-i-1-n-n-i-1-1-n-1

Question Number 154223 by mnjuly1970 last updated on 15/Sep/21 $$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\:{i}+\mathrm{1}} }{\mathrm{1}−{x}}\:{dx}\:=\:\left[−{ln}\left(\mathrm{1}−{x}\right){x}^{\:{i}+\mathrm{1}} \right]_{\mathrm{0}} ^{\:\mathrm{1}} \\ $$$$\:\:\:+\:\left(\mathrm{1}+{i}\right)\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:{i}} \:{ln}\:\left(\mathrm{1}−{x}\:\right){dx} \\ $$$$\:\:\:=\:\left(\mathrm{1}+{i}\:\right)\:\int_{\mathrm{0}} ^{\:\mathrm{1}}…

Solve-the-equation-for-reals-cos-2-x-1-5-sin-2-x-1-sin-2-x-1-5-cos-2-x-1-5tan-2-x-

Question Number 154216 by EDWIN88 last updated on 15/Sep/21 $${Solve}\:{the}\:{equation}\:{for}\:{reals}\: \\ $$$$\:\frac{\mathrm{cos}\:^{\mathrm{2}} {x}−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} {x}−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{1}}\:=\:\mathrm{5tan}\:^{\mathrm{2}} {x}\: \\ $$ Answered by MJS_new last updated on…

Square-planar-complex-is-formed-by-hybridisation-of-which-atomic-orbitals-1-s-p-x-p-y-p-z-2-s-p-x-p-y-d-z-2-3-s-p-x-p-y-d-x-2-y-2-4-s-p-x-p-y-d-z-3-

Question Number 23146 by Tinkutara last updated on 26/Oct/17 $$\mathrm{Square}\:\mathrm{planar}\:\mathrm{complex}\:\mathrm{is}\:\mathrm{formed}\:\mathrm{by} \\ $$$$\mathrm{hybridisation}\:\mathrm{of}\:\mathrm{which}\:\mathrm{atomic}\:\mathrm{orbitals}? \\ $$$$\left(\mathrm{1}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{p}_{{z}} \\ $$$$\left(\mathrm{2}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{d}_{{z}^{\mathrm{2}} } \\ $$$$\left(\mathrm{3}\right)\:{s},\:{p}_{{x}} ,\:{p}_{{y}} ,\:{d}_{{x}^{\mathrm{2}}…

Find-i-i-

Question Number 88678 by Cheyboy last updated on 12/Apr/20 $$\boldsymbol{\mathrm{F}}{ind}\:\:\:\sqrt{\boldsymbol{{i}}}+\sqrt{−\boldsymbol{\mathrm{i}}} \\ $$ Commented by mr W last updated on 12/Apr/20 $${both}\:{definitions}\:{are}\:{used}\:\left({in}\:{different}\right. \\ $$$$\left.{countries}\right): \\ $$$$−\pi<{Arg}\left({z}\right)\leqslant\pi\:{or}…