Menu Close

Author: Tinku Tara

show-that-the-variance-2-of-a-set-of-observations-x-1-x-2-x-n-with-mean-x-can-be-expressed-in-the-form-2-i-1-n-x-i-2-n-x-2-

Question Number 88592 by Rio Michael last updated on 11/Apr/20 $$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{variance}\:\delta^{\mathrm{2}} \:\mathrm{of}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{observations}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,…{x}_{{n}} \:\mathrm{with}\:\mathrm{mean} \\ $$$$\overset{\_} {{x}}\:\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\:\delta^{\mathrm{2}} \:=\:\frac{\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{i}} ^{\mathrm{2}} }{{n}}\:−\:\bar {{x}}\:^{\mathrm{2}\:} \\…

cos-2x-3-cos-x-dx-

Question Number 88586 by M±th+et£s last updated on 11/Apr/20 $$\int\frac{\sqrt{{cos}\left(\mathrm{2}{x}\right)+\mathrm{3}}}{{cos}\left({x}\right)}{dx} \\ $$ Answered by TANMAY PANACEA. last updated on 11/Apr/20 $$\int\frac{{cos}\mathrm{2}{x}+\mathrm{3}}{{cosx}\sqrt{\mathrm{3}+{cos}\mathrm{2}{x}}}{dx} \\ $$$$\int\frac{\mathrm{2}{cos}^{\mathrm{2}} {x}+\mathrm{2}}{{cosx}\sqrt{\mathrm{2}{cos}^{\mathrm{2}} {x}+\mathrm{2}}}…

A-particle-of-mass-m-strikes-on-ground-with-angle-of-incidence-45-If-coefficient-of-restitution-e-1-2-find-the-velocity-after-impact-and-angle-of-reflection-

Question Number 23049 by Tinkutara last updated on 25/Oct/17 $$\mathrm{A}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{strikes}\:\mathrm{on}\:\mathrm{ground} \\ $$$$\mathrm{with}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{incidence}\:\mathrm{45}°.\:\mathrm{If}\:\mathrm{coefficient} \\ $$$$\mathrm{of}\:\mathrm{restitution},\:{e}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{velocity} \\ $$$$\mathrm{after}\:\mathrm{impact}\:\mathrm{and}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{reflection}. \\ $$ Answered by ajfour last updated on 25/Oct/17…

lim-x-0-1-4x-1-6x-1-3-1-cos-3x-

Question Number 88580 by jagoll last updated on 11/Apr/20 $$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+\mathrm{4x}}\:−\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}+\mathrm{6x}}}{\mathrm{1}−\mathrm{cos}\:\mathrm{3x}}\:= \\ $$ Commented by mathmax by abdo last updated on 11/Apr/20 $${let}\:{f}\left({x}\right)=\frac{\sqrt{\mathrm{1}+\mathrm{4}{x}}−^{\mathrm{3}}…