Menu Close

Author: Tinku Tara

Question-154089

Question Number 154089 by iloveisrael last updated on 14/Sep/21 Answered by talminator2856791 last updated on 14/Sep/21 $$\: \\ $$$$\:\equiv\:\mathrm{max}\left(\frac{\mathrm{9}\centerdot\mathrm{sin}\left(\theta\right)\mathrm{9}\centerdot\mathrm{cos}\left(\theta\right)+\mathrm{3}\centerdot\mathrm{sin}\left(\theta\right)\mathrm{3}\centerdot\mathrm{cos}\left(\theta\right)}{\mathrm{2}}\right) \\ $$$$\:=\:\mathrm{max}\left(\frac{\mathrm{90}\left(\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right)\right)}{\mathrm{2}}\right) \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\mathrm{trigonometry}\:\mathrm{identity}:…

let-W-1-W-2-W-n-be-subspaces-of-a-vector-space-V-over-a-field-F-prove-that-1-W-1-W-2-W-n-a-subspace-of-the-vector-space-V-over-F-2-W-1-W-2-W-n-is-subspace-of-

Question Number 88552 by M±th+et£s last updated on 11/Apr/20 $${let}\:{W}_{\mathrm{1}} ,{W}_{\mathrm{2}} ,….,{W}_{{n}} \:{be}\:{subspaces}\:{of}\:{a}\:{vector} \\ $$$${space}\:{V}\:{over}\:{a}\:{field}\:\left({F},+,.\right) \\ $$$${prove}\:{that}: \\ $$$$\left(\mathrm{1}\right)\:{W}_{\mathrm{1}} \cap{W}_{\mathrm{2}} \cap….\cap{W}_{{n}} \:{a}\:{subspace} \\ $$$${of}\:{the}\:{vector}\:{space}\:{V}\:\:{over}\:\left({F},+,.\right). \\…

Question-23012

Question Number 23012 by A1B1C1D1 last updated on 25/Oct/17 Commented by ajfour last updated on 25/Oct/17 $${i}\:{had}\:{solved}\:{your}\:{previous}\: \\ $$$${question}\:\int_{\mathrm{0}} ^{\:\:\mathrm{2}} \int_{{y}/\mathrm{2}} ^{\:\:\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dxdy}\:=?…

lim-x-32x-5-14x-4-3-1-5-128x-7-6x-6-1-1-7-

Question Number 154081 by iloveisrael last updated on 14/Sep/21 $$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{5}}]{\mathrm{32}{x}^{\mathrm{5}} −\mathrm{14}{x}^{\mathrm{4}} +\mathrm{3}}−\sqrt[{\mathrm{7}}]{\mathrm{128}{x}^{\mathrm{7}} +\mathrm{6}{x}^{\mathrm{6}} −\mathrm{1}}\:=? \\ $$ Answered by EDWIN88 last updated on 14/Sep/21 $$\:\underset{{x}\rightarrow\infty}…

0-pi-2-ln-2-1-sin-t-1-sin-t-dt-

Question Number 154080 by iloveisrael last updated on 14/Sep/21 $$\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:^{\mathrm{2}} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}−\mathrm{sin}\:{t}}\right){dt} \\ $$ Answered by mindispower last updated on 14/Sep/21 $$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{4}{ln}^{\mathrm{2}}…