Question Number 154089 by iloveisrael last updated on 14/Sep/21 Answered by talminator2856791 last updated on 14/Sep/21 $$\: \\ $$$$\:\equiv\:\mathrm{max}\left(\frac{\mathrm{9}\centerdot\mathrm{sin}\left(\theta\right)\mathrm{9}\centerdot\mathrm{cos}\left(\theta\right)+\mathrm{3}\centerdot\mathrm{sin}\left(\theta\right)\mathrm{3}\centerdot\mathrm{cos}\left(\theta\right)}{\mathrm{2}}\right) \\ $$$$\:=\:\mathrm{max}\left(\frac{\mathrm{90}\left(\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right)\right)}{\mathrm{2}}\right) \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\mathrm{trigonometry}\:\mathrm{identity}:…
Question Number 154088 by iloveisrael last updated on 14/Sep/21 Commented by Tawa11 last updated on 14/Sep/21 $$\mathrm{Weldone}\:\mathrm{sir} \\ $$ Answered by mr W last updated…
Question Number 88555 by M±th+et£s last updated on 11/Apr/20 $${slove}\: \\ $$$$\lceil\frac{{x}}{{a}}\rceil<{a}\:\:\: \\ $$$${when}\:{a}>\mathrm{1} \\ $$$$\lceil…\rceil\:{is}\:{ceil}\:{function} \\ $$ Answered by mr W last updated on…
Question Number 88552 by M±th+et£s last updated on 11/Apr/20 $${let}\:{W}_{\mathrm{1}} ,{W}_{\mathrm{2}} ,….,{W}_{{n}} \:{be}\:{subspaces}\:{of}\:{a}\:{vector} \\ $$$${space}\:{V}\:{over}\:{a}\:{field}\:\left({F},+,.\right) \\ $$$${prove}\:{that}: \\ $$$$\left(\mathrm{1}\right)\:{W}_{\mathrm{1}} \cap{W}_{\mathrm{2}} \cap….\cap{W}_{{n}} \:{a}\:{subspace} \\ $$$${of}\:{the}\:{vector}\:{space}\:{V}\:\:{over}\:\left({F},+,.\right). \\…
Question Number 154090 by mdwasimraza last updated on 14/Sep/21 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 154085 by iloveisrael last updated on 14/Sep/21 Commented by iloveisrael last updated on 14/Sep/21 $${find}\:{area}\:{of}\:{triangle}\:{ABC} \\ $$ Answered by EDWIN88 last updated on…
Question Number 154087 by iloveisrael last updated on 14/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 23012 by A1B1C1D1 last updated on 25/Oct/17 Commented by ajfour last updated on 25/Oct/17 $${i}\:{had}\:{solved}\:{your}\:{previous}\: \\ $$$${question}\:\int_{\mathrm{0}} ^{\:\:\mathrm{2}} \int_{{y}/\mathrm{2}} ^{\:\:\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dxdy}\:=?…
Question Number 154081 by iloveisrael last updated on 14/Sep/21 $$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{5}}]{\mathrm{32}{x}^{\mathrm{5}} −\mathrm{14}{x}^{\mathrm{4}} +\mathrm{3}}−\sqrt[{\mathrm{7}}]{\mathrm{128}{x}^{\mathrm{7}} +\mathrm{6}{x}^{\mathrm{6}} −\mathrm{1}}\:=? \\ $$ Answered by EDWIN88 last updated on 14/Sep/21 $$\:\underset{{x}\rightarrow\infty}…
Question Number 154080 by iloveisrael last updated on 14/Sep/21 $$\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:^{\mathrm{2}} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}−\mathrm{sin}\:{t}}\right){dt} \\ $$ Answered by mindispower last updated on 14/Sep/21 $$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{4}{ln}^{\mathrm{2}}…