Menu Close

Author: Tinku Tara

kofi-have-three-books-on-his-desk-they-are-mathematics-biology-and-physics-Ama-also-have-three-books-on-her-desk-namely-physics-mathematics-and-chemistry-A-thief-picked-one-book-from-each-of-th

Question Number 88439 by otchereabdullai@gmail.com last updated on 10/Apr/20 $$\mathrm{kofi}\:\mathrm{have}\:\mathrm{three}\:\mathrm{books}\:\mathrm{on}\:\mathrm{his}\:\mathrm{desk},\:\mathrm{they} \\ $$$$\mathrm{are}\:\mathrm{mathematics}\:,\:\mathrm{biology}\:\mathrm{and}\:\mathrm{physics}. \\ $$$$\mathrm{Ama}\:\mathrm{also}\:\mathrm{have}\:\mathrm{three}\:\mathrm{books}\:\mathrm{on}\: \\ $$$$\mathrm{her}\:\mathrm{desk}\:\mathrm{namely}\:\mathrm{physics}\:,\mathrm{mathematics} \\ $$$$\mathrm{and}\:\mathrm{chemistry}.\:\mathrm{A}\:\mathrm{thief}\:\mathrm{picked}\:\mathrm{one}\:\mathrm{book} \\ $$$$\mathrm{from}\:\mathrm{each}\:\mathrm{of}\:\mathrm{their}\:\mathrm{desk}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{picking}\:\mathrm{mathematics}\: \\ $$$$\mathrm{book} \\…

show-that-for-e-gt-1-the-equation-of-a-hyperbola-with-focus-ae-0-and-directrix-x-a-e-is-x-2-a-2-y-2-b-2-hence-find-an-equation-for-the-eccencitrity-of-the-hyperbola-

Question Number 88436 by Rio Michael last updated on 10/Apr/20 $$\:\mathrm{show}\:\mathrm{that}\:\left(\mathrm{for}\:{e}>\mathrm{1}\right)\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{hyperbola}\:\mathrm{with}\: \\ $$$$\mathrm{focus}\:\:\left(\pm{ae},\mathrm{0}\right)\:\mathrm{and}\:\mathrm{directrix}\:\:{x}\:=\:\frac{{a}}{{e}}\:\mathrm{is}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:−\:\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$$\:\:\:\mathrm{hence}\:\mathrm{find}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{the}\:\mathrm{eccencitrity}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{hyperbola} \\ $$ Terms of…

find-the-partial-derivatives-of-first-and-second-order-for-the-function-f-x-y-x-3-y-3xy-y-4-

Question Number 88434 by Rio Michael last updated on 10/Apr/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{partial}\:\mathrm{derivatives}\:\mathrm{of}\:\mathrm{first}\:\mathrm{and}\:\mathrm{second}\:\mathrm{order} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{function} \\ $$$$\:{f}\left({x},{y}\right)\:=\:{x}^{\mathrm{3}} {y}\:+\:\mathrm{3}{xy}\:+\:{y}^{\mathrm{4}} \\ $$ Commented by niroj last updated on 10/Apr/20…

Question-88430

Question Number 88430 by ajfour last updated on 10/Apr/20 Commented by ajfour last updated on 10/Apr/20 $${Q}.\mathrm{88352}\:\left({My}\:{answer}\:{to}\:{the}\:{question}\right) \\ $$$${parabola}:\:\:{y}={cx}^{\mathrm{2}} +{b} \\ $$$${ellipse}:\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}}…

A-wedge-has-two-equally-rough-faces-each-inclined-at-30-to-the-horizontal-Masses-of-5kg-and-2kg-one-on-each-face-are-connected-by-a-light-string-passing-over-a-smooth-pulley-at-the-top-of-the-wedge-

Question Number 22893 by NECx last updated on 23/Oct/17 $${A}\:{wedge}\:{has}\:{two}\:{equally}\:{rough} \\ $$$${faces}\:{each}\:{inclined}\:{at}\:\mathrm{30}°\:{to}\:{the} \\ $$$${horizontal}.{Masses}\:{of}\:\mathrm{5}{kg}\:{and}\:\mathrm{2}{kg} \\ $$$$,{one}\:{on}\:{each}\:{face},{are}\:{connected} \\ $$$${by}\:{a}\:{light}\:{string}\:{passing}\:{over}\:{a} \\ $$$${smooth}\:{pulley}\:{at}\:{the}\:{top}\:{of}\:{the} \\ $$$${wedge}.{The}\:{coefficient}\:{of}\:{friction}\: \\ $$$$\mu,\:{between}\:{each}\:{masses}\:{and}\:{the} \\…