Question Number 153972 by SANOGO last updated on 12/Sep/21 $${soit}:{f}\rightarrow{x}^{\mathrm{3}} +\mathrm{3}{x}+\mathrm{1} \\ $$$${alors}:\left({f}^{\_\mathrm{1}} \right)^{''} \left(\mathrm{5}\right)=? \\ $$ Answered by mr W last updated on 12/Sep/21…
Question Number 88439 by otchereabdullai@gmail.com last updated on 10/Apr/20 $$\mathrm{kofi}\:\mathrm{have}\:\mathrm{three}\:\mathrm{books}\:\mathrm{on}\:\mathrm{his}\:\mathrm{desk},\:\mathrm{they} \\ $$$$\mathrm{are}\:\mathrm{mathematics}\:,\:\mathrm{biology}\:\mathrm{and}\:\mathrm{physics}. \\ $$$$\mathrm{Ama}\:\mathrm{also}\:\mathrm{have}\:\mathrm{three}\:\mathrm{books}\:\mathrm{on}\: \\ $$$$\mathrm{her}\:\mathrm{desk}\:\mathrm{namely}\:\mathrm{physics}\:,\mathrm{mathematics} \\ $$$$\mathrm{and}\:\mathrm{chemistry}.\:\mathrm{A}\:\mathrm{thief}\:\mathrm{picked}\:\mathrm{one}\:\mathrm{book} \\ $$$$\mathrm{from}\:\mathrm{each}\:\mathrm{of}\:\mathrm{their}\:\mathrm{desk}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{picking}\:\mathrm{mathematics}\: \\ $$$$\mathrm{book} \\…
Question Number 88436 by Rio Michael last updated on 10/Apr/20 $$\:\mathrm{show}\:\mathrm{that}\:\left(\mathrm{for}\:{e}>\mathrm{1}\right)\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{hyperbola}\:\mathrm{with}\: \\ $$$$\mathrm{focus}\:\:\left(\pm{ae},\mathrm{0}\right)\:\mathrm{and}\:\mathrm{directrix}\:\:{x}\:=\:\frac{{a}}{{e}}\:\mathrm{is}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:−\:\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$$\:\:\:\mathrm{hence}\:\mathrm{find}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{the}\:\mathrm{eccencitrity}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{hyperbola} \\ $$ Terms of…
Question Number 88434 by Rio Michael last updated on 10/Apr/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{partial}\:\mathrm{derivatives}\:\mathrm{of}\:\mathrm{first}\:\mathrm{and}\:\mathrm{second}\:\mathrm{order} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{function} \\ $$$$\:{f}\left({x},{y}\right)\:=\:{x}^{\mathrm{3}} {y}\:+\:\mathrm{3}{xy}\:+\:{y}^{\mathrm{4}} \\ $$ Commented by niroj last updated on 10/Apr/20…
Question Number 88435 by Power last updated on 10/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 22896 by jazary last updated on 23/Oct/17 $${how}\:{can}\:{demonstred} \\ $$$$\mathrm{17}^{\mathrm{4}{n}+\mathrm{1}} +\mathrm{3}×\mathrm{9}^{\mathrm{2}{n}+\mathrm{1}} \equiv\mathrm{0}\left[\mathrm{11}\right] \\ $$ Commented by Rasheed.Sindhi last updated on 24/Oct/17 $$\mathrm{For}\:\mathrm{n}=\mathrm{1} \\…
Question Number 153965 by ZiYangLee last updated on 12/Sep/21 $$\mathrm{If}\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{xy}+{y}^{\mathrm{2}} =\mathrm{1},\:\mathrm{prove}\:\mathrm{that}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{2}}{\left({x}−{y}\right)^{\mathrm{3}} } \\ $$ Answered by ARUNG_Brandon_MBU last updated on 12/Sep/21 $$\mathrm{3}{x}^{\mathrm{2}}…
Question Number 88430 by ajfour last updated on 10/Apr/20 Commented by ajfour last updated on 10/Apr/20 $${Q}.\mathrm{88352}\:\left({My}\:{answer}\:{to}\:{the}\:{question}\right) \\ $$$${parabola}:\:\:{y}={cx}^{\mathrm{2}} +{b} \\ $$$${ellipse}:\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}}…
Question Number 22893 by NECx last updated on 23/Oct/17 $${A}\:{wedge}\:{has}\:{two}\:{equally}\:{rough} \\ $$$${faces}\:{each}\:{inclined}\:{at}\:\mathrm{30}°\:{to}\:{the} \\ $$$${horizontal}.{Masses}\:{of}\:\mathrm{5}{kg}\:{and}\:\mathrm{2}{kg} \\ $$$$,{one}\:{on}\:{each}\:{face},{are}\:{connected} \\ $$$${by}\:{a}\:{light}\:{string}\:{passing}\:{over}\:{a} \\ $$$${smooth}\:{pulley}\:{at}\:{the}\:{top}\:{of}\:{the} \\ $$$${wedge}.{The}\:{coefficient}\:{of}\:{friction}\: \\ $$$$\mu,\:{between}\:{each}\:{masses}\:{and}\:{the} \\…
Question Number 88429 by M±th+et£s last updated on 10/Apr/20 $${show}\:{that} \\ $$$$\int_{\mathrm{0}\:} ^{\mathrm{1}} {ln}\left({x}\right)\:{sin}^{−\mathrm{1}} \sqrt{{x}}\:{dx}=\:\frac{\pi}{\mathrm{2}}\left({ln}\left(\mathrm{2}\right)−\mathrm{1}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com