Question Number 153763 by mathdanisur last updated on 10/Sep/21 $$\mathrm{Determine}\:\mathrm{all}\:\mathrm{pairs}\:\left(\mathrm{x};\mathrm{y}\right)\:\mathrm{of}\:\mathrm{integers} \\ $$$$\mathrm{which}\:\mathrm{satisfy} \\ $$$$\mid\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{y}^{\mathrm{2}} \mid\:-\:\sqrt{\mathrm{16y}\:+\:\mathrm{1}}\:=\:\mathrm{0} \\ $$ Answered by liberty last updated on 10/Sep/21…
Question Number 22689 by A1B1C1D1 last updated on 21/Oct/17 Answered by ajfour last updated on 25/Oct/17 $$=\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \left[\int_{\mathrm{0}} ^{\:\:\mathrm{2}{x}} {e}^{{x}^{\mathrm{2}} } {dy}\right]{dx} \\ $$$$=\int_{\mathrm{0}}…
Question Number 153757 by liberty last updated on 10/Sep/21 Commented by mr W last updated on 11/Sep/21 $${S}_{\mathrm{1}} ={S}_{\mathrm{2}} =\frac{\mathrm{85}}{\mathrm{4}} \\ $$ Answered by mr…
Question Number 153759 by mnjuly1970 last updated on 10/Sep/21 $$ \\ $$$$\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{{n}^{\mathrm{2}} \left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}^{\:\mathrm{2}} \left({x}\:\right)}{\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)^{\:\mathrm{4}} }\right)^{\:{n}} {dx}\right\}=? \\ $$$$ \\ $$ Terms…
Question Number 153758 by yeti123 last updated on 10/Sep/21 $${S}\:=\:\frac{\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{sin}\left(\theta_{{k}} \right)}{\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}\left(\theta_{{k}} \right)};\:\mathrm{where}\:\left(\theta_{{k}} \right)_{{k}\:=\:\mathrm{1}} ^{{n}} \:\mathrm{is}\:\mathrm{an}\:\mathrm{arithmetic}\:\mathrm{progression}. \\ $$$$\mathrm{show}\:\mathrm{that}\:{S}\:=\:\mathrm{tan}\left(\bar {\theta}\right) \\ $$$$\mathrm{where}\:\bar {\theta}\:=\:\frac{\mathrm{1}}{{n}}\underset{{k}\:=\:\mathrm{1}}…
Question Number 88218 by mathocean1 last updated on 09/Apr/20 Commented by mathocean1 last updated on 09/Apr/20 $$\mathrm{This}\:\mathrm{is}\:\mathrm{face}\:\mathrm{view}\:\mathrm{of}\:\mathrm{an}\:\mathrm{evacuation}\: \\ $$$$\mathrm{canal}.\:\mathrm{It}\:\mathrm{has}\:\mathrm{a}\:\mathrm{trapeze}\:\mathrm{form}.\:\mathrm{4m} \\ $$$$\mathrm{represents}\:\mathrm{its}\:\mathrm{small}\:\mathrm{base}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Determinate}\:\:\theta\:\in\:\left[\mathrm{60};\mathrm{90}\right]\:\mathrm{such}\:\mathrm{as}\:\mathrm{the}\: \\ $$$$\mathrm{capacity}\:\mathrm{of}\:\mathrm{canal}\:\mathrm{is}\:\mathrm{maximal}.…
Question Number 153755 by saly last updated on 10/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 88214 by M±th+et£s last updated on 09/Apr/20 Answered by ajfour last updated on 09/Apr/20 $${AB}={t}\:\:,\:\:{radius}={r}\:,\:{AD}={DC}={b} \\ $$$${upper}\:{section}\:{of}\:{OB}={c} \\ $$$${t}^{\mathrm{2}} =\mathrm{2}{b}^{\mathrm{2}} \:\:\:;\:\:\:\mathrm{tan}\:\alpha=\frac{{r}}{{t}+{r}} \\ $$$$\frac{\sqrt{{r}^{\mathrm{2}}…
Question Number 22679 by Tinkutara last updated on 21/Oct/17 $$\mathrm{Maximum}\:\mathrm{covalency}\:\mathrm{of}\:\mathrm{nitrogen}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$ Commented by math solver last updated on 21/Oct/17 $$\mathrm{4} \\ $$…
Question Number 22678 by tawa tawa last updated on 21/Oct/17 $$\int\:\frac{\mathrm{9x}^{\mathrm{4}} \:+\:\mathrm{12x}\left(\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} }\:\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com