Question Number 88212 by 4*3 last updated on 09/Apr/20 $$\Sigma\left[\left(\mathrm{e}^{\mathrm{s}^{\mathrm{e}^{\mathrm{s}^{} } } } −\mathrm{x}\right)^{\mathrm{r}} \right]^{\left(\mathrm{s}+\mathrm{5}\right)\frac{\mathrm{sin}\:{x}}{\mathrm{tan}\:{y}}} \:={i} \\ $$$${s}=\mathrm{5} \\ $$$$\mathrm{r}=\mathrm{2} \\ $$$${x}=\mathrm{90}° \\ $$$$ \\…
Question Number 88211 by Sahil vampire last updated on 09/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 88206 by jagoll last updated on 09/Apr/20 $$\int\:\:\frac{\mathrm{x}+\mathrm{x}^{\mathrm{3}} }{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\:\mathrm{dx}\: \\ $$ Answered by john santu last updated on 09/Apr/20 $$=\:\int\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:+\:\int\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}}…
Question Number 88207 by MAB last updated on 09/Apr/20 $${what}\:{is}\:{the}\:{biggest}\:{prime}\:{p}\:{verifying}: \\ $$$${p}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\sqrt{{k}}\right] \\ $$$${where}\:{n}\in\mathbb{N}\:\mathrm{and}\:\:\left[{x}\right]\:{is}\:{floor}\left({x}\right) \\ $$ Commented by MJS last updated on 09/Apr/20…
Question Number 88204 by behi83417@gmail.com last updated on 09/Apr/20 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{radi}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{circle}}\left(\boldsymbol{\mathrm{s}}\right)\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{tangents}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{corves}}\::\begin{cases}{\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{x}}\pm\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}^{\mathrm{2}} }}\\{\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{y}}\pm\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }}\end{cases} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 153742 by Babatunde last updated on 09/Sep/21 Answered by liberty last updated on 10/Sep/21 $${t}={e}^{\mathrm{ln}\:\mathrm{2}^{\left(\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{cos}\:^{\mathrm{4}} {x}+\mathrm{cos}\:^{\mathrm{6}} {x}+…\right)} } \:=\:\mathrm{2}^{\frac{\mathrm{cos}\:^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} {x}}} \\…
Question Number 153737 by ZiYangLee last updated on 09/Sep/21 $$\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\left(\mathrm{cos}\:\theta+\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} }\:{d}\theta=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}\:} \\ $$ Answered by puissant last updated on 09/Sep/21 $$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\left[\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}{cos}\theta+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{sin}\theta\right)\right]^{\mathrm{2}}…
Question Number 153736 by ZiYangLee last updated on 09/Sep/21 $$\mathrm{Given}\:\mathrm{that}\:\mathrm{7}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{24}\:\mathrm{sin}^{\mathrm{2}} \theta={R}\:\mathrm{cos}\left(\mathrm{2}\theta−\alpha\right), \\ $$$$\mathrm{where}\:{R}>\mathrm{0}\:\mathrm{and}\:\mathrm{0}<\alpha<\frac{\pi}{\mathrm{2}},\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{14}\:\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{48}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta. \\ $$ Answered by mr W last updated on…
Question Number 88203 by behi83417@gmail.com last updated on 09/Apr/20 $$\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{ax}}^{−\mathrm{3}} ,\:\boldsymbol{\mathrm{meets}}:\:\:\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \:\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{y}}=−\boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{x}}} \:\boldsymbol{\mathrm{at}}: \\ $$$$\boldsymbol{\mathrm{A}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{B}},\boldsymbol{\mathrm{such}}\:\boldsymbol{\mathrm{that}}:\:\boldsymbol{\mathrm{AB}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{minimum}}. \\ $$$$\boldsymbol{\mathrm{find}}:\:\boldsymbol{\mathrm{possible}}\:\boldsymbol{\mathrm{value}}\left(\boldsymbol{\mathrm{s}}\right)\:\boldsymbol{\mathrm{of}}:\:\boldsymbol{\mathrm{a}}\:\:\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{min}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{AB}}. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 153733 by mathdanisur last updated on 09/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com