Question Number 153626 by otchereabdullai@gmail.com last updated on 08/Sep/21 $$\mathrm{Ten}\:\mathrm{eggs}\:\mathrm{are}\:\mathrm{picked}\:\mathrm{at}\:\mathrm{random}\:\mathrm{without} \\ $$$$\mathrm{replacement}\:\mathrm{from}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{containing}\: \\ $$$$\mathrm{20\%}\:\mathrm{defective}\:\mathrm{eggs}.\: \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\: \\ $$$$\mathrm{at}\:\mathrm{least}\:\mathrm{four}\:\mathrm{defective}\:\mathrm{eggs} \\ $$ Answered by mr W last…
Question Number 88089 by ar247 last updated on 08/Apr/20 $$\int\frac{{e}^{{x}} }{{e}^{\mathrm{2}} −\mathrm{9}}{dx} \\ $$ Commented by ar247 last updated on 08/Apr/20 $${help} \\ $$ Answered…
Question Number 22547 by Tinkutara last updated on 20/Oct/17 $$\mathrm{If}\:\alpha\:=\:\frac{\mathrm{5}}{\mathrm{2}!\mathrm{3}}\:+\:\frac{\mathrm{5}.\mathrm{7}}{\mathrm{3}!\mathrm{3}^{\mathrm{2}} }\:+\:\frac{\mathrm{5}.\mathrm{7}.\mathrm{9}}{\mathrm{4}!\mathrm{3}^{\mathrm{3}} }\:,…\:\mathrm{then}\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\alpha^{\mathrm{2}} \:+\:\mathrm{4}\alpha. \\ $$ Answered by ajfour last updated on 20/Oct/17 $$\left(\mathrm{1}+{x}\right)^{{n}}…
Question Number 153616 by Riyoziyot last updated on 08/Sep/21 Commented by MJS_new last updated on 09/Sep/21 $$\mathrm{let}\:\mathrm{me}\:\mathrm{know}\:\mathrm{which}\:\mathrm{solution}\:\mathrm{you}\:\mathrm{like}\:\mathrm{the}\:\mathrm{best} \\ $$$$\mathrm{and}\:\mathrm{I}'\mathrm{ll}\:\mathrm{find}\:\mathrm{a}\:\mathrm{zillion}\:\mathrm{functions}\:\mathrm{providing} \\ $$$$\mathrm{this}\:\mathrm{solution} \\ $$ Terms of…
Question Number 22545 by vajpaithegrate@gmail.com last updated on 20/Oct/17 $$\int\frac{\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }\mathrm{dx}= \\ $$$$ \\ $$ Answered by $@ty@m last updated on 20/Oct/17 $${Its}\:{similar}\:{to}\:{Q}.\:{No}.\:\mathrm{20540}…
Question Number 153611 by saly last updated on 08/Sep/21 Answered by Ar Brandon last updated on 08/Sep/21 $${A}=\int\frac{\mathrm{3sin}{x}+\mathrm{2cos}{x}}{\mathrm{3cos}{x}+\mathrm{2sin}{x}}{dx} \\ $$$$\:\:\:\:=\int\frac{\mathrm{2cos}{x}−\mathrm{3sin}{x}}{\mathrm{2sin}{x}+\mathrm{3cos}{x}}{dx}+\mathrm{6}\int\frac{\mathrm{sin}{x}}{\mathrm{2sin}{x}+\mathrm{3cos}{x}}{dx} \\ $$$$\:\:\:\:=\mathrm{ln}\mid\mathrm{2sin}{x}+\mathrm{3cos}{x}\mid+\mathrm{6}\int\frac{\frac{\mathrm{4}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\frac{\mathrm{4}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}}…
Question Number 22537 by Sahib singh last updated on 20/Oct/17 $${Mr}.\:{Ajfour},\:{you}\:{are}\:{very} \\ $$$${good}\:{at}\:{solving}\:{difficult} \\ $$$${questions}.{How}\:{do}\:{you} \\ $$$${do}\:{that}\:?\:{Please}\:{tell}\:{us}\: \\ $$$${something}\:{about}\:{yourself}. \\ $$$$ \\ $$ Commented by…
Question Number 22536 by NECx last updated on 20/Oct/17 $${show}\:{that}\:\frac{\left({a}+{b}+{c}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }= \\ $$$$\frac{\mathrm{cot}\:\frac{\mathrm{1}}{\mathrm{2}}{A}+\mathrm{cot}\:\frac{\mathrm{1}}{\mathrm{2}}{B}+\mathrm{cot}\:\frac{\mathrm{1}}{\mathrm{2}}{C}}{\mathrm{cot}\:{A}+\mathrm{cot}\:{B}+\mathrm{cot}\:{C}} \\ $$$$ \\ $$$$ \\ $$$${please}\:{help} \\ $$ Commented…
Question Number 153605 by bramlexs22 last updated on 09/Sep/21 $$\:\:\begin{cases}{\sqrt{\mathrm{x}}\:+\sqrt{\mathrm{y}+\mathrm{z}}\:=\mathrm{5}}\\{\sqrt{\mathrm{y}}+\sqrt{\mathrm{z}+\mathrm{x}}\:=\:\mathrm{7}}\\{\sqrt{\mathrm{z}}+\sqrt{\mathrm{x}+\mathrm{y}}\:=\:\mathrm{7}}\end{cases} \\ $$ Commented by Rasheed.Sindhi last updated on 08/Sep/21 $$\:\:\begin{cases}{\sqrt{\mathrm{x}}\:+\sqrt{\mathrm{y}+\mathrm{z}}\:=\mathrm{5}}\\{\sqrt{\mathrm{y}}+\sqrt{\mathrm{z}+\mathrm{x}}\:=\:\mathrm{7}}\\{\sqrt{{z}}+\sqrt{\mathrm{x}+\mathrm{y}}\:=\:\mathrm{7}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:? \\ $$ Commented…
Question Number 22535 by Arjun Daniel last updated on 19/Oct/17 $$\mathrm{H}{ow}\:{to}\:{solve}\:{this}\:{homogeneous}\:{equation}.\:{Can}\:{u}\:{help}\:{me}\:{plz} \\ $$$${Q}.\:{solve}\:\left({x}\:{sin}\:\frac{{y}}{{x}}\right){dy}\:−\left({y}\:{sin}^{−\mathrm{1}} \:\frac{{y}}{{x}}\right){dx}=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com