Menu Close

Author: Tinku Tara

Question-88068

Question Number 88068 by student work last updated on 08/Apr/20 Commented by john santu last updated on 08/Apr/20 $${do}\:{you}\:{mean}\:\mathrm{ln}\:{x}^{\mathrm{2}} \:.\mathrm{2log}_{\mathrm{2}{x}} \:\left({x}\right)\:=\:\mathrm{log}_{\mathrm{4}{x}} \left(\mathrm{2}\right)?? \\ $$ Commented…

Question-88069

Question Number 88069 by Power last updated on 08/Apr/20 Commented by Power last updated on 08/Apr/20 $$\lfloor\mathrm{x}\rfloor−\mathrm{greatest}\:\mathrm{integer}\: \\ $$$$\mathrm{x}=\lfloor\mathrm{x}\rfloor+\left\{\mathrm{x}\right\}\:\:\:\:\:\:\:\mathrm{0}\leqslant\left\{\mathrm{x}\right\}<\mathrm{1} \\ $$ Commented by mathmax by…

dx-cos-x-2-sin-x-

Question Number 88064 by jagoll last updated on 08/Apr/20 $$\int\:\frac{\mathrm{dx}}{\mathrm{cos}\:\mathrm{x}\left(\mathrm{2}+\mathrm{sin}\:\mathrm{x}\right)}? \\ $$ Answered by john santu last updated on 08/Apr/20 $$\int\:\frac{\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\left(\mathrm{2}+\mathrm{sin}\:\mathrm{x}\right)}\:=\:\int\frac{\mathrm{d}\left(\mathrm{sin}\:\mathrm{x}\right)}{\left(\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\right)\left(\mathrm{2}+\mathrm{sin}\:\mathrm{x}\right)} \\ $$$$\left[\:\mathrm{let}\:\mathrm{2}+\mathrm{sin}\:\mathrm{x}\:=\:\mathrm{t}\:\right]…

Question-22525

Question Number 22525 by ajfour last updated on 19/Oct/17 Commented by ajfour last updated on 19/Oct/17 $${A}\:{hemisphere}\:{is}\:{inscribed}\:{in}\:{a} \\ $$$${regular}\:{tetrahedron}\:,{of}\:{edge}\:\boldsymbol{{a}}\:, \\ $$$${such}\:{that}\:{three}\:{faces}\:{of}\:{tetrahedron} \\ $$$${are}\:{tangent}\:{to}\:{its}\:{spherical} \\ $$$${surface},\:{and}\:{the}\:{fourth}\:{serves}…

lim-x-cos-npi-e-1-2n-

Question Number 153598 by liberty last updated on 08/Sep/21 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}cos}\:\left({n}\pi\:\sqrt[{\mathrm{2}{n}}]{{e}}\:\right)=? \\ $$ Commented by tabata last updated on 08/Sep/21 $$\boldsymbol{{y}}=\:\boldsymbol{{n}\pi}\:\sqrt[{\mathrm{2}\boldsymbol{{n}}}]{\boldsymbol{{e}}}\: \\ $$$$ \\ $$$$\boldsymbol{{lim}}_{\boldsymbol{{y}}\rightarrow\infty}…