Menu Close

Author: Tinku Tara

Solve-sin-2x-2-

Question Number 153593 by tabata last updated on 08/Sep/21 $$\boldsymbol{{Solve}}\::\:\left(\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{x}}\right)\right)!\:=\:\mathrm{2} \\ $$ Answered by puissant last updated on 08/Sep/21 $$\left({sin}\left(\mathrm{2}{x}\right)\right)!=\mathrm{2}!\:\Rightarrow\:{sin}\left(\mathrm{2}{x}\right)=\mathrm{2} \\ $$$$\Rightarrow\:\frac{{e}^{\mathrm{2}{ix}} −{e}^{−\mathrm{2}{ix}} }{\mathrm{2}{i}}=\mathrm{2} \\…

Find-the-coefficient-of-x-in-the-expansion-of-1-x-2-x-1-in-ascending-power-of-x-when-x-lt-1-

Question Number 22517 by Tinkutara last updated on 19/Oct/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion} \\ $$$$\mathrm{of}\:\left[\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:−\:{x}\right]^{−\mathrm{1}} \:\mathrm{in}\:\mathrm{ascending}\:\mathrm{power} \\ $$$$\mathrm{of}\:{x}\:\mathrm{when}\:\mid{x}\mid\:<\:\mathrm{1}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-88050

Question Number 88050 by Sahil vampire last updated on 08/Apr/20 Commented by mr W last updated on 08/Apr/20 $${i}\:{found}\:{there}\:{is}\:{only}\:{one}\:{such}\:{number}: \\ $$$$\mathrm{588}\:\mathrm{2353} \\ $$$$\mathrm{588}^{\mathrm{2}} +\mathrm{2353}^{\mathrm{2}} =\mathrm{588}\:\mathrm{2353}…

In-a-quadrilateral-ABCD-it-is-given-that-AB-is-parallel-to-CD-and-the-diagonals-AC-and-BD-are-perpendicular-to-each-other-Show-that-a-AD-BC-AB-CD-b-AD-BC-AB-CD-

Question Number 22515 by Tinkutara last updated on 19/Oct/17 $$\mathrm{In}\:\mathrm{a}\:\mathrm{quadrilateral}\:{ABCD},\:\mathrm{it}\:\mathrm{is}\:\mathrm{given} \\ $$$$\mathrm{that}\:{AB}\:\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:{CD}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{diagonals}\:{AC}\:\mathrm{and}\:{BD}\:\mathrm{are}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{each}\:\mathrm{other}. \\ $$$$\mathrm{Show}\:\mathrm{that} \\ $$$$\left(\mathrm{a}\right)\:{AD}.{BC}\:\geqslant\:{AB}.{CD}; \\ $$$$\left(\mathrm{b}\right)\:{AD}\:+\:{BC}\:\geqslant\:{AB}\:+\:{CD}. \\ $$ Terms…

sin-x-2sin-x-cos-x-dx-

Question Number 88045 by jagoll last updated on 08/Apr/20 $$\int\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{2sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$ Commented by john santu last updated on 08/Apr/20 $$\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{2sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:=\:\frac{\mathrm{2}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{5}}\left[\frac{\mathrm{2cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{2sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:\right] \\ $$$$\Rightarrow\:\int\:\left\{\frac{\mathrm{2}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{5}}\left[\frac{\mathrm{2cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{2sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:\right]\right\}\:\mathrm{dx} \\ $$$$=\:\frac{\mathrm{2x}}{\mathrm{5}}−\:\frac{\mathrm{1}}{\mathrm{5}}\:\mathrm{log}\:\mid\:\mathrm{2sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\:\mid\:+\:\mathrm{c}…