Menu Close

Author: Tinku Tara

if-tanx-1-3-or-other-except-standard-values-how-to-find-x-

Question Number 22268 by Sanjay Deore last updated on 14/Oct/17 $$\mathrm{if}\:\mathrm{tanx}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{or}\:\mathrm{other}\:\left(\mathrm{except}\:\mathrm{standard}\:\right. \\ $$$$\left.\mathrm{values}\right)\:\mathrm{how}\:\mathrm{to}\:\mathrm{find}\:\mathrm{x} \\ $$ Commented by $@ty@m last updated on 14/Oct/17 $${using}\:{trigonometric}\:{tables} \\ $$…

Question-87803

Question Number 87803 by ajfour last updated on 06/Apr/20 Commented by ajfour last updated on 06/Apr/20 $${Nice}\:{question}\:{this}\:{is},\:{posted}\:{by} \\ $$$${Moth}…\left({I}\:{haven}'{t}\:{tried}\:{but}\:{no}\right. \\ $$$$\left.{one}\:{else},\:{either}\right)\:{mrW}\:{Sir}\:{shall} \\ $$$${you},\:{please}?\:{Area}\:{of}\:{green}\:\bigtriangleup=? \\ $$…

x-1-x-x-2-x-x-3-x-1-x-3-x-Easy-question-

Question Number 153339 by amin96 last updated on 06/Sep/21 $$\:\:\frac{{x}−\mathrm{1}}{{x}}+\frac{{x}−\mathrm{2}}{{x}}+\frac{{x}−\mathrm{3}}{{x}}+\ldots+\frac{\mathrm{1}}{{x}}=\mathrm{3}\:\:\:\:{x}=? \\ $$$$\because\therefore\because\therefore\because\:\:{Easy}\:{question}\therefore\because\therefore\because\therefore\because \\ $$ Answered by MJS_new last updated on 06/Sep/21 $$\frac{\underset{{j}=\mathrm{1}} {\overset{{x}−\mathrm{1}} {\sum}}{j}}{{x}}=\frac{{x}−\mathrm{1}}{\mathrm{2}}=\mathrm{3}\:\Rightarrow\:{x}=\mathrm{7} \\…

What-is-1-5-2-3-

Question Number 22264 by kasiulka202 last updated on 14/Oct/17 $${What}\:{is}\:\mathrm{1}+\mathrm{5}\frac{\mathrm{2}}{\mathrm{3}} \\ $$ Answered by Joel577 last updated on 14/Oct/17 $$\mathrm{U}\:\mathrm{have}\:\mathrm{1}\:\mathrm{cake},\:\mathrm{and}\:\mathrm{then}\:\mathrm{u}\:\mathrm{buy}\:\mathrm{5}\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{cakes} \\ $$$$\mathrm{So},\:\mathrm{u}\:\mathrm{have}\:\mathrm{total}\:\mathrm{6}\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{cakes} \\ $$ Terms…

f-x-ax-2-bx-1-x-0-cx-2-d-0-lt-x-1-2-bx-d-1-2-lt-x-1-f-x-is-continuous-on-1-1-prove-d-0-c-2b-

Question Number 87799 by M±th+et£s last updated on 06/Apr/20 $${f}\left({x}\right)=\begin{cases}{{ax}^{\mathrm{2}} +{bx}\:\:\:\:\:\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{0}}\\{{cx}^{\mathrm{2}} +{d}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}<{x}\leqslant\frac{\mathrm{1}}{\mathrm{2}}}\\{{bx}+{d}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}<{x}\leqslant\mathrm{1}}\end{cases} \\ $$$${f}\left({x}\right)\:{is}\:{continuous}\:{on}\left[−\mathrm{1},\mathrm{1}\right] \\ $$$${prove}\:{d}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{c}=\mathrm{2}{b} \\ $$ Commented by john santu last…

Slove-xtanx-dx-

Question Number 22261 by tapan das last updated on 14/Oct/17 $$\mathrm{Slove} \\ $$$$\int\mathrm{xtanx}\:\mathrm{dx} \\ $$ Answered by scottfeed last updated on 13/Nov/17 $${using}\:{integration}\:{by}\:{part}\:{formula}\:{to}\:{solve} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int{udv}={uv}−\int{vdu}…

8-x-1-3-4-x-1-solve-for-x-Any-idea-

Question Number 22260 by Bruce Lee last updated on 14/Oct/17 $$\mathrm{8}^{\boldsymbol{{x}}−\mathrm{1}} +\frac{\mathrm{3}}{\mathrm{4}}\boldsymbol{{x}}=\mathrm{1}\:\:\:\:\:\:\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}} \\ $$$$\boldsymbol{{Any}}\:\boldsymbol{{idea}}? \\ $$ Answered by mrW1 last updated on 15/Oct/17 $$\mathrm{8}^{\mathrm{x}−\mathrm{1}} =\frac{\mathrm{4}−\mathrm{3x}}{\mathrm{4}}…

show-that-e-sin-x-dx-n-0-1-n-cos-x-sin-x-n-1-sin-x-2-n-2-1-2-2F-1-1-2-1-n-2-3-2-cos-x-2-c-notice-2F-1-is-special-function-called-hyperge

Question Number 87793 by M±th+et£s last updated on 06/Apr/20 $${show}\:{that} \\ $$$$\int{e}^{{sin}\left({x}\right)} \:{dx}= \\ $$$$−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\left[\:{cos}\left({x}\right)\ast\left({sin}\left({x}\right)\right)^{{n}+\mathrm{1}} \ast\left[\left({sin}\left({x}\right)\right)^{\mathrm{2}} \right]^{\left(\frac{−{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \ast\:\mathrm{2}{F}_{\mathrm{1}} \left[\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}−{n}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};\left({cos}\left({x}\right)\right)^{\mathrm{2}} \right]\:\right]+{c} \\ $$$$ \\…