Menu Close

Author: Tinku Tara

find-in-the-form-y-f-x-the-general-solution-of-the-differentail-equation-d-2-y-dx-2-dy-dx-6y-e-3x-

Question Number 87751 by Rio Michael last updated on 06/Apr/20 $$\mathrm{find}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{y}=\:{f}\left({x}\right)\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{differentail}\:\mathrm{equation} \\ $$$$\:\:\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:−\frac{{dy}}{{dx}}−\mathrm{6}{y}\:=\:{e}^{\mathrm{3}{x}} \\ $$$$ \\ $$ Commented by niroj last…

4x-e-3x-dx-

Question Number 22210 by cmaxamuud98 @gmail.com last updated on 13/Oct/17 $$\int\frac{\mathrm{4}{x}}{{e}^{\mathrm{3}{x}} }{dx} \\ $$ Answered by ajfour last updated on 13/Oct/17 $$=\mathrm{4}\int{xe}^{−\mathrm{3}{x}} {dx} \\ $$$$=\mathrm{4}\left\{{x}\int{e}^{−\mathrm{3}{x}}…

solve-sin-pi-x-4-1-2-

Question Number 87737 by M±th+et£s last updated on 05/Apr/20 $${solve} \\ $$$${sin}\left(\frac{\pi}{\left[\frac{\left[{x}\right]}{\mathrm{4}}\right]}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Answered by mahdi last updated on 06/Apr/20 $$\mathrm{u}=\left[\frac{\left[\mathrm{x}\right]}{\mathrm{4}}\right]\Rightarrow−\mathrm{1}\leqslant\frac{\mathrm{1}}{\mathrm{u}}\leqslant\mathrm{1}\Rightarrow−\pi\leqslant\frac{\pi}{\mathrm{u}}\leqslant\pi\:\:\:\left\{\mathrm{u}\neq\mathrm{0}\Rightarrow\mathrm{x}\notin\left[\mathrm{0},\mathrm{4}\right)\right\} \\ $$$$\mathrm{sin}\left(\frac{\pi}{\mathrm{u}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\begin{cases}{\frac{\pi}{\mathrm{u}}=\frac{\pi}{\mathrm{6}}+\mathrm{2k}\pi}\\{\frac{\pi}{\mathrm{u}}=\frac{\mathrm{5}\pi}{\mathrm{6}}+\mathrm{2k}\pi}\end{cases} \\…

Question-87733

Question Number 87733 by TawaTawa1 last updated on 05/Apr/20 Commented by mahdi last updated on 05/Apr/20 $$\mathrm{27y}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{3}} }=\left(\mathrm{3y}+\frac{\mathrm{1}}{\mathrm{y}}\right)\left(\mathrm{9y}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} }−\mathrm{3}\right)= \\ $$$$\left(\mathrm{3y}+\frac{\mathrm{1}}{\mathrm{y}}\right)\left(\mathrm{3}−\mathrm{3}\right)=\mathrm{0} \\ $$…

A-body-of-mass-0-1kg-dropped-from-a-height-of-8m-onto-a-hard-floor-and-bounces-back-to-a-height-of-2m-Calculate-the-chaange-in-momentum-If-the-body-is-in-contact-with-the-floor-for-0-1s-what-is-the

Question Number 22193 by NECx last updated on 13/Oct/17 $$\mathrm{A}\:\mathrm{body}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{0}.\mathrm{1kg}\:\mathrm{dropped}\: \\ $$$$\mathrm{from}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\mathrm{8m}\:\mathrm{onto}\:\mathrm{a}\:\mathrm{hard} \\ $$$$\mathrm{floor}\:\mathrm{and}\:\mathrm{bounces}\:\mathrm{back}\:\mathrm{to}\:\mathrm{a}\:\mathrm{height} \\ $$$$\mathrm{of}\:\mathrm{2m}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{chaange}\:\mathrm{in} \\ $$$$\mathrm{momentum}.\mathrm{If}\:\mathrm{the}\:\mathrm{body}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{contact}\:\mathrm{with}\:\mathrm{the}\:\mathrm{floor}\:\mathrm{for}\:\mathrm{0}.\mathrm{1s}, \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{force}\:\mathrm{exerted}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{body}?\left(\mathrm{g}=\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \right)…