Question Number 153263 by mnjuly1970 last updated on 06/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 87724 by mr W last updated on 05/Apr/20 $${solve}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{cos}}\:\lfloor\boldsymbol{{x}}\rfloor\right)=\mathrm{1} \\ $$ Answered by mahdi last updated on 05/Apr/20 $$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{cos}\left[\mathrm{x}\right]\right)=\mathrm{1}\Rightarrow\mathrm{cos}\left[\mathrm{x}\right]=\mathrm{sin}\left(\mathrm{1}+\mathrm{2k}\pi\right)…
Question Number 153257 by naka3546 last updated on 06/Sep/21 $${Find}\:\:{set}\:\:{of}\:\:{k}\:\:{value}\:\:{so}\:\:{that} \\ $$$$\:\:\:\:\:\:\:\mid{x}\mid\:+\:\mid{x}−\mathrm{1}\mid\:+\:\mid{x}−\mathrm{4}\mid\:=\:{k} \\ $$$${a}.\:{has}\:\:{one}\:\:{solution} \\ $$$${b}.\:{has}\:\:{two}\:\:{solutions} \\ $$$${c}.\:{has}\:\:{many}\:\:{solutions} \\ $$$${d}.\:{has}\:\:{no}\:\:{solution} \\ $$ Answered by ajfour…
Question Number 153256 by Lekhraj last updated on 06/Sep/21 Commented by MJS_new last updated on 06/Sep/21 $${x}<{y} \\ $$$${x}=\frac{\mathrm{25}}{\mathrm{9}{t}}\wedge{y}=\frac{\mathrm{25}{t}}{\mathrm{9}} \\ $$$${t}=\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}\:\Rightarrow\:\frac{{x}}{{y}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\left(\mathrm{for}\:{y}<{x}\:\mathrm{we}\:\mathrm{get}\:\frac{{x}}{{y}}=\frac{\mathrm{5}}{\mathrm{3}}\right) \\ $$…
Question Number 87723 by Ar Brandon last updated on 05/Apr/20 $$\int\left(\frac{\mathrm{1}}{{x}−\mathrm{1}}+\frac{\underset{{k}=\mathrm{0}} {\overset{\mathrm{2018}} {\sum}}\left({k}+\mathrm{1}\right){x}^{{k}} }{\underset{{k}=\mathrm{0}} {\overset{\mathrm{2019}} {\sum}}{x}^{{k}} }\right){dx} \\ $$ Answered by mahdi last updated on…
Question Number 153252 by liberty last updated on 06/Sep/21 Answered by MJS_new last updated on 06/Sep/21 $${y}''=\mathrm{0} \\ $$$$\frac{\mathrm{2}{ax}\left({x}^{\mathrm{2}} −\mathrm{3}{b}\right)}{\left({x}^{\mathrm{2}} +{b}\right)^{\mathrm{3}} }=\mathrm{0} \\ $$$$\Rightarrow\:{x}=\mathrm{0}\vee{x}=\pm\sqrt{\mathrm{3}{b}}\vee{a}=\mathrm{0}\:\left(\mathrm{rejected}\right) \\…
Question Number 87716 by Power last updated on 05/Apr/20 Commented by malwaan last updated on 05/Apr/20 $${put}\:{x}=\mathrm{2}{sin}\:{y}\:\Rightarrow\:{dx}=\mathrm{2}{cosydy} \\ $$$$\mathrm{3}{x}−{x}^{\mathrm{3}} \:=\:\mathrm{2}{sin}\mathrm{3}{y} \\ $$$$\therefore\:\int\:^{\mathrm{3}} \sqrt{\mathrm{2}{sin}\mathrm{3}{y}}\:.\:\mathrm{2}{cosy}\:{dy}\:=\:?? \\ $$…
Question Number 153249 by SANOGO last updated on 06/Sep/21 Answered by qaz last updated on 06/Sep/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{l}−\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$$$=−\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\int_{\mathrm{0}}…
Question Number 22177 by Tinkutara last updated on 12/Oct/17 $$\frac{{C}_{\mathrm{0}} }{\mathrm{2}}\:−\:\frac{{C}_{\mathrm{1}} }{\mathrm{3}}\:+\:\frac{{C}_{\mathrm{2}} }{\mathrm{4}}\:−\:\frac{{C}_{\mathrm{3}} }{\mathrm{5}}\:+\:………. \\ $$ Answered by ajfour last updated on 12/Oct/17 $${x}\left(\mathrm{1}−{x}\right)^{{n}} ={C}_{\mathrm{0}}…
Question Number 153245 by liberty last updated on 06/Sep/21 $$\:\:\begin{cases}{{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} {y}=\mathrm{30}}\\{{y}^{\mathrm{3}} −\mathrm{3}{xy}^{\mathrm{2}} =\mathrm{10}}\end{cases} \\ $$$$\:\left({x},{y}\right)=? \\ $$ Answered by Rasheed.Sindhi last updated on 06/Sep/21…