Question Number 87711 by M±th+et£s last updated on 05/Apr/20 $$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{xe}^{−{x}} −{e}^{−{x}} }{{x}\left({e}^{{x}} −{e}^{−{x}} \right)}{dx} \\ $$ Commented by mind is power last updated…
Question Number 22174 by Adoy last updated on 12/Oct/17 Answered by $@ty@m last updated on 13/Oct/17 $$ \\ $$$$=\frac{\mathrm{4}−\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}+\sqrt{\mathrm{6}}} \\ $$$$=\frac{\mathrm{4}−\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}+\sqrt{\mathrm{6}}}×\frac{\mathrm{2}−\sqrt{\mathrm{6}}}{\mathrm{2}−\sqrt{\mathrm{6}}} \\ $$$$=\frac{\left(\mathrm{4}−\mathrm{5}\sqrt{}\mathrm{3}\right)\left(\mathrm{2}−\sqrt{\mathrm{6}}\right)}{\left(\mathrm{2}+\sqrt{\mathrm{6}}\right)\left(\mathrm{2}−\sqrt{\left.\mathrm{6}\right)}\right.} \\ $$$$=\frac{\mathrm{8}−\mathrm{4}\sqrt{}\mathrm{6}−\mathrm{10}\sqrt{\mathrm{3}}+\mathrm{5}\sqrt{\mathrm{18}}}{\mathrm{2}^{\mathrm{2}}…
Question Number 87709 by M±th+et£s last updated on 05/Apr/20 $${sbow}\:{that} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\left[\mathrm{3}{x}\right]}{\left(\left[{x}\right]\right)!}{dx}=\mathrm{4}{e}−\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 22166 by Joel577 last updated on 12/Oct/17 $$\mathrm{If}\underset{\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:{f}\left({x}\right)\:{dx}\:=\:\mathrm{5} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:{f}\left(\mathrm{3}{x}\:+\mathrm{1}\right)\:{dx}\:? \\ $$ Answered by ajfour last updated on 12/Oct/17…
Question Number 153239 by rexford last updated on 06/Sep/21 Answered by MJS_new last updated on 06/Sep/21 $${z}={a}+{b}\mathrm{i} \\ $$$${w}=−{b}+{a}\mathrm{i} \\ $$$${z}+{w}\mathrm{i}={a}+{b}\mathrm{i}+\left(−{b}\mathrm{i}−{a}\right)=\mathrm{0} \\ $$$${zw}=\left({a}+{b}\mathrm{i}\right)\left(−{b}+{a}\mathrm{i}\right)=−\mathrm{2}{ab}+\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{i}…
Question Number 22165 by A1B1C1D1 last updated on 12/Oct/17 Answered by ajfour last updated on 13/Oct/17 $${let}\:\:\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\:={t}\:\:\:\:\Rightarrow\:{x}^{\mathrm{2}} =\mathrm{1}−\frac{{x}}{{t}} \\ $$$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}+\frac{{x}}{{t}}−\mathrm{2}\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}+\frac{{t}^{\mathrm{4}} }{\mathrm{24}}−….\right)}{\mathrm{2}{x}^{\mathrm{4}} }\right)…
Question Number 22162 by j.masanja06@gmail.com last updated on 12/Oct/17 $${use}\:{the}\:{appropite}\:{set}\:{law}\:{to}\:{show}\: \\ $$$${that} \\ $$$$\left({A}−{B}\right)\cup\left({B}−{A}\right)=\left({A}\cup{B}\right)−\left({A}\cap{B}\right) \\ $$ Answered by $@ty@m last updated on 12/Oct/17 $$\left({A}\cup{B}\right)−\left({A}\cap{B}\right)\Leftrightarrow\left({A}\cup{B}\right)\cap\left({A}\cap{B}\right)^{'} \\…
Question Number 22161 by j.masanja06@gmail.com last updated on 12/Oct/17 $${The}\:{students}\:{were}\:{asked}\:{whether} \\ $$$${they}\:{had}\:{dictionary}\left({D}\right)\:{or}\:{thesau} \\ $$$${rus}\left({T}\right)\:{in}\:{their}\:{room}.{the}\:{results}\: \\ $$$${showed}\:{that}\:\mathrm{650}\:{students}\:{had}\:{dict} \\ $$$${ionary},\mathrm{150}\:{did}\:{not}\:{had}\:{dictionary}, \\ $$$$\mathrm{175}\:{had}\:{a}\:{thesaurus},{and}\:\mathrm{50}\:{had} \\ $$$${neither}\:{a}\:{dictionary}\:{nor}\:{a}\:{thesaur} \\ $$$${us},{fimd}\:{the}\:{number}\:{of}\:{student}\:{who} \\…
Question Number 87692 by mind is power last updated on 05/Apr/20 $${sir}\:{Ma}?{h}+{t}?{que}\:{you}\:{have}\:{posted} \\ $$$$\int\frac{{dx}}{\left(\left({x}+\mathrm{1}\right)….\left({x}+{n}\right)\right)^{\mathrm{2}} }=……{can}\:{you}\:{reposted}\:{it}\:{please} \\ $$ Commented by M±th+et£s last updated on 05/Apr/20 Commented…
Question Number 87690 by jagoll last updated on 05/Apr/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:\mathrm{x}−\mathrm{sin}\:\mathrm{2x}}{\mathrm{x}−\mathrm{sin}\:\mathrm{x}} \\ $$ Commented by jagoll last updated on 05/Apr/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\right)−\left(\mathrm{2x}−\frac{\mathrm{8x}^{\mathrm{3}} }{\mathrm{6}}\right)}{\mathrm{x}−\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\right)}\:=…