Question Number 153201 by ajfour last updated on 05/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 153200 by amin96 last updated on 05/Sep/21 $$\int_{\mathrm{0}} ^{{e}−\mathrm{1}} \int_{\mathrm{0}} ^{{e}−{x}−\mathrm{1}} \int_{\mathrm{0}} ^{{x}+{y}+{e}} \frac{{ln}\left({z}−{x}−{y}\right)}{\left({x}−{e}\right)\left({x}+{y}−{e}\right)}{dxdydz}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 153203 by mathdanisur last updated on 05/Sep/21 Answered by Kamel last updated on 05/Sep/21 $${f}\left({x}\right)=\frac{\mathrm{1}−\sqrt{\mathrm{1}−\mathrm{2}{x}}}{\mathrm{2}},{f}_{{n}} ^{−\mathrm{1}} =\underset{…………… {n}\:{times} ………} {{f}^{−\mathrm{1}} \circ{f}^{−\mathrm{1}} \circ{f}^{−\mathrm{1}} \circ…\circ{f}^{−\mathrm{1}}…
Question Number 22128 by devika last updated on 11/Oct/17 Commented by Samuel KT last updated on 11/Oct/17 $$\mathrm{what}'\mathrm{s}\:\mathrm{the}\:\mathrm{question}?? \\ $$ Commented by $@ty@m last updated…
Question Number 87656 by M±th+et£s last updated on 05/Apr/20 $$\frac{\mathrm{1}+{sin}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi+{i}\:{cos}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi}{\mathrm{1}+{sin}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi−{i}\:{cos}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi}=? \\ $$ Commented by Tony Lin last updated on 05/Apr/20 $${let}\:{sin}\frac{\pi}{\mathrm{8}}+{icos}\frac{\pi}{\mathrm{8}}={z}\:,\mid{z}\mid=\mathrm{1} \\ $$$$\frac{\mathrm{1}+{z}}{\mathrm{1}+\bar {{z}}} \\…
Question Number 153194 by SANOGO last updated on 05/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 22120 by Sirius last updated on 11/Oct/17 $$\mathrm{hi},\:{i}'{m}\:{new}\:{here}. \\ $$ Commented by Rasheed.Sindhi last updated on 11/Oct/17 $$\mathrm{You}\:\mathrm{are}\:\mathrm{welcome}! \\ $$ Commented by Sirius…
Question Number 153189 by liberty last updated on 05/Sep/21 Answered by EDWIN88 last updated on 05/Sep/21 $$\:{eq}\:{of}\:{circle}\:\mathrm{16}{x}^{\mathrm{2}} +\mathrm{16}{y}^{\mathrm{2}} +\mathrm{48}{x}−\mathrm{8}{y}−\mathrm{43}= \\ $$$${with}\:{center}\:{point}\:\begin{cases}{{x}=−\frac{\mathrm{48}}{\mathrm{32}}=−\frac{\mathrm{3}}{\mathrm{2}}}\\{{y}=\frac{\mathrm{8}}{\mathrm{32}}=\frac{\mathrm{1}}{\mathrm{4}}}\end{cases} \\ $$$${with}\:{radius}\:=\sqrt{\frac{\mathrm{9}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}−\left(\frac{−\mathrm{43}}{\mathrm{16}}\right)} \\ $$$$\Rightarrow{r}=\sqrt{\frac{\mathrm{36}+\mathrm{1}+\mathrm{43}}{\mathrm{16}}}\:=\frac{\mathrm{4}\sqrt{\mathrm{5}}}{\mathrm{4}}=\sqrt{\mathrm{5}}\:…
Question Number 22116 by ajfour last updated on 11/Oct/17 Commented by ajfour last updated on 11/Oct/17 $${to}\:{prove}\::\:\:\left({b}+{c}\right)^{\mathrm{2}} \:\geqslant\:{a}^{\mathrm{2}} +\mathrm{4}{h}_{{a}} ^{\mathrm{2}} \:. \\ $$$${see}\:\:\:{Q}.\mathrm{22079}\:\: \\ $$…
Question Number 87648 by john santu last updated on 05/Apr/20 $$\mathrm{the}\:\mathrm{sequence}\:\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} ,\mathrm{a}_{\mathrm{3}} ,\:…\:\mathrm{satisfies} \\ $$$$\mathrm{the}\:\mathrm{relation}\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:=\:\mathrm{a}_{\mathrm{n}} +\mathrm{a}_{\mathrm{n}−\mathrm{1}} \:,\:\mathrm{for} \\ $$$$\mathrm{n}>\mathrm{1}.\:\mathrm{given}\:\mathrm{that}\:\mathrm{a}_{\mathrm{20}} \:=\:\mathrm{6765}\:\mathrm{and} \\ $$$$\mathrm{a}_{\mathrm{18}} \:=\:\mathrm{2584}\:\mathrm{what}\:\mathrm{is}\:\mathrm{a}_{\mathrm{16}}…