Question Number 153130 by mathdanisur last updated on 04/Sep/21 $$\mathrm{if}\:\:\:\mathrm{x}^{\mathrm{5}} +\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{3}} +\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{find}\:\:\:\mathrm{x}^{\mathrm{3}} \:-\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\:=\:? \\ $$ Answered by ajfour last updated…
Question Number 22055 by ANTARES_VY last updated on 10/Oct/17 Commented by Joel577 last updated on 10/Oct/17 $${What}'{s}\:{the}\:{question}? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 153127 by alisiao last updated on 04/Sep/21 Commented by alisiao last updated on 04/Sep/21 $$?????? \\ $$ Commented by alisiao last updated on…
Question Number 22052 by Tinkutara last updated on 10/Oct/17 $$\mathrm{A}\:\mathrm{hockey}\:\mathrm{player}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{northward} \\ $$$$\mathrm{and}\:\mathrm{suddenly}\:\mathrm{turns}\:\mathrm{westward}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{speed}\:\mathrm{to}\:\mathrm{avoid}\:\mathrm{an}\:\mathrm{opponent}. \\ $$$$\mathrm{The}\:\mathrm{force}\:\mathrm{that}\:\mathrm{acts}\:\mathrm{on}\:\mathrm{the}\:\mathrm{player}\:\mathrm{is} \\ $$$$\left({a}\right)\:\mathrm{frictional}\:\mathrm{force}\:\mathrm{along}\:\mathrm{westward} \\ $$$$\left({b}\right)\:\mathrm{muscle}\:\mathrm{force}\:\mathrm{along}\:\mathrm{southward} \\ $$$$\left({c}\right)\:\mathrm{frictional}\:\mathrm{force}\:\mathrm{along}\:\mathrm{south}-\mathrm{west} \\ $$$$\left({d}\right)\:\mathrm{muscle}\:\mathrm{force}\:\mathrm{along}\:\mathrm{south}-\mathrm{west} \\…
Question Number 87586 by manr last updated on 05/Apr/20 $${l}.{c}.{m}\:{of}\:{two}\:{numbers}\:{is}\:{p}^{\mathrm{2}} {q}^{\mathrm{4}} {r}^{\mathrm{4}} \:{p}\:{q}\:{r}\:{are} \\ $$$${primes}.{find}\:{the}\:{possible}\:{no}.\:{of}\:{pairs} \\ $$ Answered by mr W last updated on 05/Apr/20…
Question Number 22051 by FilupS last updated on 10/Oct/17 $$\mathrm{I}\:\mathrm{have}\:\mathrm{recently}\:\mathrm{seen}\:\mathrm{a}\:\mathrm{different}\:\mathrm{notation} \\ $$$$\mathrm{for}\:\mathrm{integration},\:\mathrm{written}\:\mathrm{as}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int{dxf}\left({x}\right) \\ $$$${e}.{g}. \\ $$$$\:\:\:\:\:\:\int{dx}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\: \\ $$$$\mathrm{Is}\:\mathrm{this}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int{f}\left({x}\right){dx} \\…
Question Number 22050 by Tinkutara last updated on 10/Oct/17 $$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{energy}\:\mathrm{emitted}\:\mathrm{when} \\ $$$$\mathrm{electrons}\:\mathrm{of}\:\mathrm{1}\:\mathrm{g}\:\mathrm{atom}\:\mathrm{of}\:\mathrm{hydrogen} \\ $$$$\mathrm{undergo}\:\mathrm{transition}\:\mathrm{giving}\:\mathrm{the}\:\mathrm{spectral} \\ $$$$\mathrm{line}\:\mathrm{of}\:\mathrm{lowest}\:\mathrm{energy}\:\mathrm{in}\:\mathrm{the}\:\mathrm{visible} \\ $$$$\mathrm{region}\:\mathrm{of}\:\mathrm{its}\:\mathrm{atomic}\:\mathrm{spectrum} \\ $$$$\left(\mathrm{R}_{\mathrm{H}} \:=\:\mathrm{1}.\mathrm{1}\:×\:\mathrm{10}^{\mathrm{7}} \:\mathrm{m}^{−\mathrm{1}} ,\:{c}\:=\:\mathrm{3}\:×\:\mathrm{10}^{\mathrm{8}} \:{ms}^{−\mathrm{1}} ,\right.…
Question Number 87585 by Power last updated on 05/Apr/20 Answered by redmiiuser last updated on 05/Apr/20 $${arc}\mathrm{sin}\:{x}+\mathrm{arccos}\:{x}=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{arcsin}\:{x}.\mathrm{arccos}\:{x}=\frac{\pi}{\mathrm{2}}\mathrm{arcsin}\:{x}−\left(\mathrm{arcsin}\:{x}\right)^{\mathrm{2}} \\ $$$$\mathrm{arcsin}\:{x}={t} \\ $$$${dx}=\mathrm{cos}\:{t}.{dt} \\ $$$${x}=\mathrm{sin}\:{t}…
Question Number 153117 by peter frank last updated on 04/Sep/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cot}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{x}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$ Answered by puissant last updated on 04/Sep/21 $${I}=\int_{\mathrm{0}}…
Question Number 22047 by Tinkutara last updated on 10/Oct/17 $$\mathrm{If}\:{x}\:>\:\mathrm{0}\:\mathrm{and}\:\mathrm{the}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion} \\ $$$$\mathrm{of}\:\left(\mathrm{2}\:+\:\frac{\mathrm{3}}{\mathrm{8}}{x}\right)^{\mathrm{10}} \:\mathrm{has}\:\mathrm{maximum}\:\mathrm{value} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{x}. \\ $$ Commented by Tinkutara last updated on 10/Oct/17…