Question Number 22038 by Tinkutara last updated on 10/Oct/17 $$\mathrm{The}\:\mathrm{symbols}\:+,\:+,\:×,\:×,\:\bigstar,\:\bullet,\:\mathrm{are} \\ $$$$\mathrm{placed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{squares}\:\mathrm{of}\:\mathrm{the}\:\mathrm{adjoining} \\ $$$$\mathrm{figure}.\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{of}\:\mathrm{placing} \\ $$$$\mathrm{symbols}\:\mathrm{so}\:\mathrm{that}\:\mathrm{no}\:\mathrm{row}\:\mathrm{remains}\:\mathrm{empty} \\ $$$$\mathrm{is} \\ $$ Commented by Tinkutara last updated…
Question Number 153111 by peter frank last updated on 04/Sep/21 $$\int_{−\mathrm{1}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{x}} \:\mathrm{dx}\:\mathrm{as}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sum} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 22037 by Tinkutara last updated on 10/Oct/17 $$\mathrm{How}\:\mathrm{many}\:\mathrm{5}-\mathrm{digit}\:\mathrm{numbers}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{digits}\:\left\{\mathrm{0},\:\mathrm{1},\:…..,\:\mathrm{9}\right\}\:\mathrm{have}? \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Strictly}\:\mathrm{increasing}\:\mathrm{digits} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Strictly}\:\mathrm{increasing}\:\mathrm{or}\:\mathrm{decreasing} \\ $$$$\mathrm{digits} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{Increasing}\:\mathrm{digits} \\ $$$$\left(\mathrm{iv}\right)\:\mathrm{Increasing}\:\mathrm{or}\:\mathrm{decreasing}\:\mathrm{digits} \\ $$ Commented…
Question Number 153110 by peter frank last updated on 04/Sep/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{3x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}\right)\mathrm{dx}\: \\ $$$$\mathrm{as}\:\mathrm{the}\:\mathrm{limit}\:\:\mathrm{of}\:\mathrm{sum} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 22036 by Tinkutara last updated on 14/Oct/17 $$\mathrm{2}{n}\:\mathrm{objects}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{three}\:\mathrm{kinds}\:\mathrm{are} \\ $$$$\mathrm{given}\:\mathrm{to}\:\mathrm{two}\:\mathrm{persons},\:\mathrm{so}\:\mathrm{that}\:\mathrm{each} \\ $$$$\mathrm{person}\:\mathrm{gets}\:\mathrm{3}{n}\:\mathrm{objects}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{done}\:\mathrm{in}\:\mathrm{3}{n}^{\mathrm{2}} \:+\:\mathrm{3}{n}\:+\:\mathrm{1}\:\mathrm{ways}. \\ $$ Commented by Tinkutara last updated on…
Question Number 153105 by alisiao last updated on 04/Sep/21 $${find}\:\:\boldsymbol{{ln}}\:\boldsymbol{\Gamma}\left(\boldsymbol{{x}}\right)\:? \\ $$ Answered by puissant last updated on 04/Sep/21 $${ln}\left(\Gamma\left({x}\right)\right)=−\gamma{x}−{lnx}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{{x}}{{k}}−{ln}\left(\mathrm{1}+\frac{{x}}{{k}}\right)\right\} \\ $$$$=\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right){lnx}−{x}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi\right)+\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{2}} {\overset{\infty}…
Question Number 22035 by Tinkutara last updated on 10/Oct/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{five}\:\mathrm{digits}\:\mathrm{can}\:\mathrm{be}\:\mathrm{made} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3}\:\mathrm{each}\:\mathrm{of}\:\mathrm{which}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{used}\:\mathrm{atmost}\:\mathrm{thrice}\:\mathrm{in}\:\mathrm{a}\:\mathrm{number}\:\mathrm{is} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 153104 by amin96 last updated on 04/Sep/21 $$\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{3}} +\left(\pi−{x}\right)^{\mathrm{3}} }{dx}=? \\ $$ Answered by puissant last updated on 04/Sep/21 $${I}=\int_{\mathrm{0}}…
Question Number 153103 by amin96 last updated on 04/Sep/21 $$\frac{\mathrm{1}}{\mathrm{2}\centerdot\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}\centerdot\mathrm{5}\centerdot\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{7}\centerdot\mathrm{8}\centerdot\mathrm{9}}+\ldots \\ $$ Answered by puissant last updated on 04/Sep/21 $${S}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty}…
Question Number 87563 by Serlea last updated on 05/Apr/20 $$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{numbers} \\ $$$$\frac{\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} +…+\mathrm{2}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} +…+\mathrm{2}^{\mathrm{n}} }\:\mathrm{and}\: \\ $$$$\frac{\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +…+\mathrm{3}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +…+\mathrm{3}^{\mathrm{n}}…