Menu Close

Author: Tinku Tara

The-number-of-ways-of-distributing-six-identical-mathematics-books-and-six-identical-physics-books-among-three-students-such-that-each-student-gets-atleast-one-mathematics-book-and-atleast-one-physics

Question Number 21931 by Tinkutara last updated on 07/Oct/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{of}\:\mathrm{distributing}\:\mathrm{six} \\ $$$$\mathrm{identical}\:\mathrm{mathematics}\:\mathrm{books}\:\mathrm{and}\:\mathrm{six} \\ $$$$\mathrm{identical}\:\mathrm{physics}\:\mathrm{books}\:\mathrm{among}\:\mathrm{three} \\ $$$$\mathrm{students}\:\mathrm{such}\:\mathrm{that}\:\mathrm{each}\:\mathrm{student}\:\mathrm{gets} \\ $$$$\mathrm{atleast}\:\mathrm{one}\:\mathrm{mathematics}\:\mathrm{book}\:\mathrm{and} \\ $$$$\mathrm{atleast}\:\mathrm{one}\:\mathrm{physics}\:\mathrm{book}\:\mathrm{is}\:\frac{\mathrm{5}.\mathrm{5}!}{{k}},\:\mathrm{then}\:{k} \\ $$$$\mathrm{is} \\ $$ Commented…

An-eight-digit-number-is-formed-from-1-2-3-4-such-that-product-of-all-digits-is-always-3072-the-total-number-of-ways-is-23-8-C-k-where-the-value-of-k-is-

Question Number 21930 by Tinkutara last updated on 07/Oct/17 $$\mathrm{An}\:\mathrm{eight}\:\mathrm{digit}\:\mathrm{number}\:\mathrm{is}\:\mathrm{formed}\:\mathrm{from} \\ $$$$\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\:\mathrm{such}\:\mathrm{that}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\mathrm{digits} \\ $$$$\mathrm{is}\:\mathrm{always}\:\mathrm{3072},\:\mathrm{the}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{ways}\:\mathrm{is}\:\left(\mathrm{23}.\:^{\mathrm{8}} {C}_{{k}} \right),\:\mathrm{where}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{k} \\ $$$$\mathrm{is} \\ $$ Commented by mrW1…

There-are-8-Hindi-novels-and-6-English-novels-4-Hindi-novels-and-3-English-novels-are-selected-and-arranged-in-a-row-such-that-they-are-alternate-then-no-of-ways-is-

Question Number 21929 by Tinkutara last updated on 07/Oct/17 $$\mathrm{There}\:\mathrm{are}\:\mathrm{8}\:\mathrm{Hindi}\:\mathrm{novels}\:\mathrm{and}\:\mathrm{6}\:\mathrm{English} \\ $$$$\mathrm{novels}.\:\mathrm{4}\:\mathrm{Hindi}\:\mathrm{novels}\:\mathrm{and}\:\mathrm{3}\:\mathrm{English} \\ $$$$\mathrm{novels}\:\mathrm{are}\:\mathrm{selected}\:\mathrm{and}\:\mathrm{arranged}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{row}\:\mathrm{such}\:\mathrm{that}\:\mathrm{they}\:\mathrm{are}\:\mathrm{alternate}\:\mathrm{then} \\ $$$$\mathrm{no}.\:\mathrm{of}\:\mathrm{ways}\:\mathrm{is} \\ $$ Commented by mrW1 last updated…

Calculate-lim-x-1-f-x-sin-x-1-3x-3-please-detail-sirs-

Question Number 87462 by mathocean1 last updated on 04/Apr/20 $$\mathrm{Calculate}\:\:\:\:\:\:\:\:\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{1}} {\mathrm{m}f}\left({x}\right)=\frac{{sin}\left({x}−\mathrm{1}\right)}{\mathrm{3}{x}−\mathrm{3}} \\ $$$${please}\:{detail}\:{sirs} \\ $$ Commented by jagoll last updated on 04/Apr/20 $$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{x}−\mathrm{1}\right)}{\mathrm{3x}−\mathrm{3}}\:? \\…

e-1-e-1-lnx-2-x-dx-

Question Number 87461 by hamdhan last updated on 04/Apr/20 $$\underset{{e}^{-\mathrm{1}} } {\overset{\mathrm{e}} {\int}}\:\frac{\sqrt{\mathrm{1}−\left(\mathrm{ln}{x}\right)^{\mathrm{2}} }}{{x}}\:{dx} \\ $$ Commented by ajfour last updated on 04/Apr/20 $${let}\:\:\mathrm{ln}\:{x}={t}\:\:\:\:\Rightarrow\:\:\left({dx}\right)/{x}={dt} \\…

find-all-functions-f-R-R-so-that-x-y-f-x-y-x-y-f-x-y-4xy-x-2-y-2-x-y-R-

Question Number 87459 by john santu last updated on 04/Apr/20 $$\mathrm{find}\:\mathrm{all}\:\mathrm{functions}\:\mathrm{f}\::\mathbb{R}\:\rightarrow\mathbb{R} \\ $$$$\mathrm{so}\:\mathrm{that}\:\left(\mathrm{x}−\mathrm{y}\right)\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)\:−\left(\mathrm{x}+\mathrm{y}\right)\:\mathrm{f}\left(\mathrm{x}−\mathrm{y}\right)\:= \\ $$$$\mathrm{4xy}\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)\:\forall\mathrm{x},\mathrm{y}\:\in\mathbb{R} \\ $$ Terms of Service Privacy Policy Contact:…

How-many-seven-letter-words-can-be-formed-by-using-the-letters-of-the-word-SUCCESS-so-that-neither-two-C-nor-two-S-are-together-

Question Number 21917 by Tinkutara last updated on 06/Oct/17 $$\mathrm{How}\:\mathrm{many}\:\mathrm{seven}\:\mathrm{letter}\:\mathrm{words}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{formed}\:\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word} \\ $$$$\mathrm{SUCCESS}\:\mathrm{so}\:\mathrm{that}\:\mathrm{neither}\:\mathrm{two}\:\mathrm{C}\:\mathrm{nor} \\ $$$$\mathrm{two}\:\mathrm{S}\:\mathrm{are}\:\mathrm{together}? \\ $$ Commented by mrW1 last updated on 07/Oct/17…