Menu Close

Author: Tinku Tara

Which-is-greater-10-11-or-11-10-

Question Number 21781 by Tinkutara last updated on 03/Oct/17 $$\mathrm{Which}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{10}^{\mathrm{11}} \:\mathrm{or}\:\mathrm{11}^{\mathrm{10}} ? \\ $$ Answered by Joel577 last updated on 03/Oct/17 $$\:\:\:\:\:\:\:\:\:\:\mathrm{10}^{\mathrm{11}} \:…\:\mathrm{11}^{\mathrm{10}} \\ $$$$\mathrm{11}\:\mathrm{log}\:\mathrm{10}\:…\:\mathrm{10}\:\mathrm{log}\:\mathrm{11}…

Question-152848

Question Number 152848 by 0731619 last updated on 02/Sep/21 Commented by hknkrc46 last updated on 02/Sep/21 $$\boldsymbol{{Wrong}}\:!!! \\ $$$$\sqrt{\mathrm{12}}\:+\:\cancel{\sqrt{\mathrm{18}}}\:\rightarrow\:\sqrt{\mathrm{12}}\:+\:\sqrt{\mathrm{16}} \\ $$ Commented by hknkrc46 last…

simplify-3-x-63-21-x-2-7-x-1-

Question Number 152844 by bobhans last updated on 02/Sep/21 $$\:\:\:\:\:\:\:\:\:\:\:{simplify}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{3}^{{x}} \:+\:\mathrm{63}}{\mathrm{21}^{{x}−\mathrm{2}} \:+\:\mathrm{7}^{{x}−\mathrm{1}} }\: \\ $$ Answered by Rasheed.Sindhi last updated on 02/Sep/21 $$\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{3}^{{x}}…

A-sequence-U-n-is-defined-reculsively-as-U-o-1-2-and-U-n-1-2-1-U-n-for-n-N-a-Show-by-mathematical-induction-that-all-terms-in-the-sequence-are-positive-b-Given-that-t

Question Number 87308 by Rio Michael last updated on 03/Apr/20 $$\:\mathrm{A}\:\mathrm{sequence}\:\left({U}_{{n}} \right)\:\mathrm{is}\:\mathrm{defined}\:\mathrm{reculsively}\:\mathrm{as}\: \\ $$$$\:{U}_{{o}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{and}\:{U}_{{n}+\mathrm{1}} \:=\:\frac{\mathrm{2}}{\mathrm{1}\:+\:{U}_{{n}} }\:\mathrm{for}\:\mathrm{n}\:\in\:\mathbb{N} \\ $$$$\left.\:\mathrm{a}\right)\:\mathrm{Show}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{that}\:\mathrm{all}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{sequence} \\ $$$$\:\:\:\:\:\mathrm{are}\:\mathrm{positive}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\left({U}_{{n}} \right)\:\mathrm{is}\:\mathrm{convergent},\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{limit},{l},\:\mathrm{is} \\…

Question-152841

Question Number 152841 by 0731619 last updated on 02/Sep/21 Answered by bobhans last updated on 02/Sep/21 $$\left(\mathrm{2}\right)\frac{\mathrm{1}}{\mathrm{4}}\int\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)\:{dx}\:= \\ $$$$\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}\int\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{4}{x}\right)}{\mathrm{2}}\:{dx}\:= \\ $$$$\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{x}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{sin}\:\left(\mathrm{4}{x}\right)\right)+\:{c}\:= \\ $$$$\:\:\:\:\:\frac{{x}}{\mathrm{8}}−\frac{\mathrm{sin}\:\left(\mathrm{4}{x}\right)}{\mathrm{32}}\:+\:{c} \\…