Question Number 87250 by john santu last updated on 03/Apr/20 $$\sqrt[{\mathrm{3}\:\:}]{\mathrm{cos}\:\frac{\pi}{\mathrm{7}}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{7}}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{7}}}\:=? \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 21713 by Tinkutara last updated on 01/Oct/17 $$\mathrm{A}\:\mathrm{constant}\:\mathrm{force}\:{F}\:=\:\mathrm{20}\:\mathrm{N}\:\mathrm{acts}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{which}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{to} \\ $$$$\mathrm{two}\:\mathrm{blocks}\:\mathrm{of}\:\mathrm{masses}\:{m}_{\mathrm{1}} \:=\:\mathrm{1}\:\mathrm{kg}\:\mathrm{and} \\ $$$${m}_{\mathrm{2}} \:=\:\mathrm{2}\:\mathrm{kg}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{accelerations} \\ $$$$\mathrm{produced}\:\mathrm{in}\:\mathrm{all}\:\mathrm{the}\:\mathrm{three}\:\mathrm{blocks}.\:\mathrm{Assume} \\ $$$$\mathrm{pulleys}\:\mathrm{are}\:\mathrm{frictionless}\:\mathrm{and}\:\mathrm{weightless}. \\ $$ Commented…
Question Number 87245 by redmiiuser last updated on 03/Apr/20 $${expand}\: \\ $$$$\left(\mathrm{1}+{x}\right)^{−\mathrm{1}} \\ $$$${using}\:{maclaurins} \\ $$$${theorem}\:{and}\:{talyors} \\ $$$${formula} \\ $$ Commented by jagoll last updated…
Question Number 21708 by Isse last updated on 01/Oct/17 $$\int_{\mathrm{0}} ^{\mathrm{0}.\mathrm{5}} \mathrm{2}{tan}^{\mathrm{2}} \mathrm{2}{tdt} \\ $$ Answered by $@ty@m last updated on 01/Oct/17 $$\int_{\mathrm{0}} ^{\mathrm{0}.\mathrm{5}} \mathrm{2}\left(\mathrm{sec}\:^{\mathrm{2}}…
Question Number 21707 by Isse last updated on 01/Oct/17 $$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{\mathrm{1}}{\mathrm{2}}{cot}^{\mathrm{2}} \mathrm{2}\theta{d}\theta \\ $$ Commented by Tikufly last updated on 01/Oct/17 $$\mathrm{I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \left(\mathrm{cosec}^{\mathrm{2}}…
Question Number 87243 by john santu last updated on 03/Apr/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\:\mathrm{sin}\:{x}}{\:\sqrt{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)^{{p}} }}\:=\:{k}\: \\ $$$${k}\:=\:{constant}\:,\:\mathrm{find}\:\mathrm{p}\: \\ $$ Commented by jagoll last updated on 04/Apr/20 $$\underset{{x}\rightarrow\mathrm{0}}…
Question Number 152779 by Lekhraj last updated on 01/Sep/21 Commented by mr W last updated on 01/Sep/21 $${what}\:{is}\:{the}\:{question}? \\ $$ Commented by Lekhraj last updated…
Question Number 152778 by mnjuly1970 last updated on 01/Sep/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Solve}\:………. \\ $$$$\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\:{sin}\left(\:{ln}\:\left({x}\:\right)\right){dx}\:\overset{?} {=}\:\frac{−\mathrm{1}}{\:\:\:\mathrm{5}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{solution}…. \\ $$$$\:\:\:\:\:\Omega\::\overset{{i}.{b}.{p}} {=}\left[\:\frac{{x}^{\:\mathrm{2}} }{\mathrm{2}}\:.\:{sin}\left({ln}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\:\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}}…
Question Number 152772 by Rankut last updated on 01/Sep/21 $$\boldsymbol{{if}}\:\:\sqrt[{\mathrm{3}}]{\sqrt[{\mathrm{3}}]{\boldsymbol{{x}}−\mathrm{2}}+\mathrm{2}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt[{\mathrm{3}}]{\boldsymbol{{x}}−\mathrm{2}}}=\mathrm{2} \\ $$$$\:\boldsymbol{\mathrm{then}}\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\: \\ $$$$\sqrt{\mathrm{198}\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\mathrm{868}\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{229}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{200}\boldsymbol{\mathrm{x}}} \\ $$ Commented by Rankut last updated on…
Question Number 21702 by Isse last updated on 01/Oct/17 $$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \mathrm{1}/\mathrm{2}{cot}^{\mathrm{2}} \mathrm{2}\theta{d}\theta \\ $$ Commented by Tikufly last updated on 01/Oct/17 $$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{\mathrm{1}}{\mathrm{2}{cot}^{\mathrm{2}}…