Question Number 152748 by Tawa11 last updated on 01/Sep/21 Answered by Olaf_Thorendsen last updated on 01/Sep/21 $$\mathrm{R}_{\mathrm{T}} \::\:\mathrm{total}\:\mathrm{resistance} \\ $$$$\mathrm{E}\:=\:\mathrm{R}_{\mathrm{T}} \mathrm{I}\:=\:\frac{\mathrm{I}}{\frac{\mathrm{1}}{\mathrm{R}}+\frac{\mathrm{1}}{\mathrm{X}}}\:=\:\frac{\mathrm{3A}}{\frac{\mathrm{1}}{\mathrm{5}\Omega}+\frac{\mathrm{1}}{\mathrm{X}}}\:=\:\frac{\mathrm{6A}}{\frac{\mathrm{1}}{\mathrm{2}\Omega}+\frac{\mathrm{1}}{\mathrm{X}}} \\ $$$$\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{X}}\right)\:=\:\mathrm{6}\left(\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{X}}\right) \\ $$$$\mathrm{1},\mathrm{5}+\frac{\mathrm{3}}{\mathrm{X}}\:=\:\mathrm{1},\mathrm{2}+\frac{\mathrm{6}}{\mathrm{X}}…
Question Number 152751 by talminator2856791 last updated on 01/Sep/21 $$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\left(\mathrm{cos}\left(\mathrm{2cos}\left({x}\right)+\mathrm{1}\right)+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\left(\mathrm{ln}\left(\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}−{x}\right)\right)^{\mathrm{4}} }\:\:{dx} \\ $$$$\: \\ $$$$\: \\ $$…
Question Number 152740 by mr W last updated on 31/Aug/21 Commented by mr W last updated on 31/Aug/21 $$\left[{Q}\mathrm{152712}\right] \\ $$ Answered by mr W…
Question Number 21670 by Tinkutara last updated on 30/Sep/17 $$\mathrm{The}\:\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{3}\:\mathrm{kg}\:\mathrm{are} \\ $$$$\mathrm{placed}\:\mathrm{one}\:\mathrm{over}\:\mathrm{the}\:\mathrm{other}.\:\mathrm{The}\:\mathrm{contact} \\ $$$$\mathrm{surfaces}\:\mathrm{are}\:\mathrm{rough}\:\mathrm{with}\:\mathrm{coefficient}\:\mathrm{of} \\ $$$$\mathrm{friction}\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{2},\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{06}.\:\mathrm{A}\:\mathrm{force}\:{F}\:= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{t}\:\mathrm{N}\:\left(\mathrm{where}\:{t}\:\mathrm{is}\:\mathrm{in}\:\mathrm{second}\right)\:\mathrm{is}\:\mathrm{applied} \\ $$$$\mathrm{on}\:\mathrm{upper}\:\mathrm{block}\:\mathrm{in}\:\mathrm{the}\:\mathrm{direction}.\:\left(\mathrm{Given}\right. \\ $$$$\left.\mathrm{that}\:{g}\:=\:\mathrm{10}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right)…
Question Number 21662 by x² – y²@gmail.com last updated on 30/Sep/17 Answered by Joel577 last updated on 30/Sep/17 $${I}\:=\:\int\:\frac{\mathrm{8}{x}^{\mathrm{5}} \:−\:\mathrm{18}{x}^{\mathrm{3}} }{\mathrm{2}{x}^{\mathrm{3}} \:−\:\mathrm{3}{x}^{\mathrm{2}} }\:{dx}\:=\:\int\:\frac{\mathrm{2}{x}^{\mathrm{3}} \left(\mathrm{4}{x}^{\mathrm{2}} \:−\:\mathrm{9}\right)}{{x}^{\mathrm{2}}…
Question Number 21661 by tawa tawa last updated on 30/Sep/17 Commented by tawa tawa last updated on 30/Sep/17 $$\left(\mathrm{1}\right) \\ $$$$\mathrm{Oxygen}\:\mathrm{gives}\:\mathrm{three}\:\mathrm{lines}\:\mathrm{in}\:\mathrm{mass}\:\mathrm{spectrometer},\:\mathrm{indicating}\:\mathrm{the}\:\mathrm{existence}\:\mathrm{of} \\ $$$$\mathrm{three}\:\mathrm{types}\:\mathrm{of}\:\mathrm{oxygen}\:\mathrm{atom}\:\mathrm{with}\:\mathrm{masses}\:\mathrm{15}.\mathrm{995},\:\mathrm{16}.\mathrm{999},\:\mathrm{with}\:\mathrm{relative} \\ $$$$\mathrm{abundance}\:\mathrm{of}\:\mathrm{99}.\mathrm{76},\:\mathrm{0}.\mathrm{04}\:\mathrm{and}\:\mathrm{0}.\mathrm{20}\:\mathrm{respectively}.\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{relative}\:…
Question Number 87194 by john santu last updated on 03/Apr/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\: \\ $$$$\frac{\mid\:\mathrm{log}_{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{2}\mid}{\mathrm{x}−\mathrm{3}}\:<\:\mathrm{2}\: \\ $$ Commented by TANMAY PANACEA. last updated on 03/Apr/20 $${is}\:{it}\:\left(\mathrm{2}+{log}_{\mathrm{2}}…
Question Number 152730 by puissant last updated on 31/Aug/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \frac{{tanx}}{\:\sqrt{\mathrm{2}{cosx}−\mathrm{1}}}{dx} \\ $$ Answered by Olaf_Thorendsen last updated on 31/Aug/21 $$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{tan}{x}}{\:\sqrt{\mathrm{2cos}{x}−\mathrm{1}}} \\…
Question Number 21656 by Joel577 last updated on 30/Sep/17 $$\mathrm{Let}\:{A}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{cubic}\:\mathrm{polynomial}\:\mathrm{and}\:{B}\left({x}\right)\:=\:\left({x}\:−\mathrm{1}\right)\left({x}\:−\:\mathrm{2}\right)\left({x}\:−\:\mathrm{3}\right) \\ $$$$\mathrm{Find}\:\mathrm{how}\:\mathrm{many}\:{C}\left({x}\right)\:\mathrm{so}\:\mathrm{that} \\ $$$${B}\left({C}\left({x}\right)\right)\:=\:{B}\left({x}\right)\:.\:{A}\left({x}\right) \\ $$ Commented by Joel577 last updated on 01/Oct/17 $${The}\:{answer}\:{isn}'{t}\:{given}\:{to}\:{me}.\: \\…
Question Number 21655 by Joel577 last updated on 30/Sep/17 $$\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{0}}\end{pmatrix}\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{2}}\end{pmatrix}\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{4}}\end{pmatrix}\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{6}}\end{pmatrix}\:+\:…\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\mathrm{2016}}\end{pmatrix} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:… \\ $$ Answered by $@ty@m last updated on 30/Sep/17 $$\left(\mathrm{1}+{x}\right)^{{n}} =\:^{{n}} {C}_{\mathrm{0}} +\:^{{n}}…