Menu Close

Author: Tinku Tara

Question-152596

Question Number 152596 by liberty last updated on 30/Aug/21 Answered by som(math1967) last updated on 30/Aug/21 $$\boldsymbol{{let}}\:\frac{\mathrm{3}\boldsymbol{{x}}+\boldsymbol{{y}}}{\mathrm{4}\boldsymbol{{y}}+\mathrm{3}}=\frac{\mathrm{4}\boldsymbol{{y}}+\mathrm{1}}{\mathrm{9}}=\frac{\mathrm{11}}{\mathrm{3}\boldsymbol{{x}}+\boldsymbol{{y}}}=\boldsymbol{{k}} \\ $$$$\left[\because\boldsymbol{{a}}=\boldsymbol{{b}}=\boldsymbol{{c}}\right] \\ $$$$\mathrm{3}\boldsymbol{{x}}+\boldsymbol{{y}}=\boldsymbol{{k}}\left(\mathrm{4}\boldsymbol{{y}}+\mathrm{3}\right) \\ $$$$\mathrm{4}\boldsymbol{{y}}+\mathrm{1}=\mathrm{9}\boldsymbol{{k}} \\ $$$$\mathrm{11}=\boldsymbol{{k}}\left(\mathrm{3}\boldsymbol{{x}}+\boldsymbol{{y}}\right)…

lim-x-0-cos-3-2x-cos-x-cos-2-2x-cos-x-

Question Number 87061 by john santu last updated on 02/Apr/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{2x}\right)−\mathrm{cos}\:\left(\mathrm{x}\right)}{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{2x}\right)−\mathrm{cos}\:\left(\mathrm{x}\right)}\:=\: \\ $$ Commented by jagoll last updated on 02/Apr/20 $$\mathrm{i}\:\mathrm{can}\:\mathrm{try} \\…