Question Number 152601 by mnjuly1970 last updated on 30/Aug/21 $$ \\ $$$$\:\:\:{solve}…. \\ $$$$\:\:{lim}_{\:{n}\rightarrow\infty} \left\{\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}\:−\frac{{k}}{{n}}+\frac{{k}^{\:\mathrm{2}} }{{n}^{\:\mathrm{2}} }\:\right)^{\:\frac{\mathrm{1}}{{n}}} \right\}=? \\ $$$$\:\:{m}.{n}… \\ $$$$ \\…
Question Number 21531 by Princejak last updated on 26/Sep/17 $${Factorise}\:{the}\:{equation}\:{by}\:{factor}\:{theorem} \\ $$$$\mathrm{12}\hat {{x}}\mathrm{3}\:+\:\mathrm{4}\hat {{x}}\mathrm{2}−\mathrm{3}{x}−\mathrm{1} \\ $$ Commented by Princejak last updated on 26/Sep/17 $${please}\:{answer} \\…
Question Number 87065 by Power last updated on 02/Apr/20 Commented by MJS last updated on 02/Apr/20 $$\mathrm{2} \\ $$ Commented by Power last updated on…
Question Number 152597 by mondli66 last updated on 30/Aug/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 152596 by liberty last updated on 30/Aug/21 Answered by som(math1967) last updated on 30/Aug/21 $$\boldsymbol{{let}}\:\frac{\mathrm{3}\boldsymbol{{x}}+\boldsymbol{{y}}}{\mathrm{4}\boldsymbol{{y}}+\mathrm{3}}=\frac{\mathrm{4}\boldsymbol{{y}}+\mathrm{1}}{\mathrm{9}}=\frac{\mathrm{11}}{\mathrm{3}\boldsymbol{{x}}+\boldsymbol{{y}}}=\boldsymbol{{k}} \\ $$$$\left[\because\boldsymbol{{a}}=\boldsymbol{{b}}=\boldsymbol{{c}}\right] \\ $$$$\mathrm{3}\boldsymbol{{x}}+\boldsymbol{{y}}=\boldsymbol{{k}}\left(\mathrm{4}\boldsymbol{{y}}+\mathrm{3}\right) \\ $$$$\mathrm{4}\boldsymbol{{y}}+\mathrm{1}=\mathrm{9}\boldsymbol{{k}} \\ $$$$\mathrm{11}=\boldsymbol{{k}}\left(\mathrm{3}\boldsymbol{{x}}+\boldsymbol{{y}}\right)…
Question Number 21526 by tawa tawa last updated on 26/Sep/17 Commented by tawa tawa last updated on 26/Sep/17 $$\mathrm{Please}\:\mathrm{help}\:\mathrm{me}.\:\mathrm{Thanks}\:\mathrm{in}\:\mathrm{advance}. \\ $$ Commented by $@ty@m last…
Question Number 87061 by john santu last updated on 02/Apr/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{2x}\right)−\mathrm{cos}\:\left(\mathrm{x}\right)}{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{2x}\right)−\mathrm{cos}\:\left(\mathrm{x}\right)}\:=\: \\ $$ Commented by jagoll last updated on 02/Apr/20 $$\mathrm{i}\:\mathrm{can}\:\mathrm{try} \\…
Question Number 87059 by jagoll last updated on 02/Apr/20 $$\left(\mathrm{y}\:'\right)^{\mathrm{2}} −\mathrm{xy}'\:+\mathrm{y}\:=\:\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$ Answered by mr W last updated on 03/Apr/20 $${y}'=\frac{\mathrm{1}}{\mathrm{2}}\left({x}\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{y}}\right)…
Question Number 152588 by rexford last updated on 30/Aug/21 $$\int_{−\mathrm{1}\:} ^{\mathrm{1}} \frac{\mathrm{3}{x}+\mathrm{4}}{\mathrm{3}+\mathrm{4}{x}+\mathrm{3}{x}^{\mathrm{2}} }{dt} \\ $$$${please},{help}\:{me} \\ $$ Answered by qaz last updated on 30/Aug/21 $$\int_{−\mathrm{1}}…
Question Number 87052 by lémùst last updated on 02/Apr/20 $${f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{sin}^{\mathrm{2}} \left({t}\right)}{\mathrm{1}+{xsin}^{\mathrm{2}} \left({t}\right)}{dt} \\ $$ Commented by mathmax by abdo last updated on 02/Apr/20…