Menu Close

Author: Tinku Tara

Calculate-I-0-1-t-1-sh-t-2-dt-

Question Number 224100 by Jgrads last updated on 19/Aug/25 $$\mathrm{Calculate}\:\mathrm{I}=\underset{\:\mathrm{0}} {\int}^{\:+\infty} \left[\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{1}}{\mathrm{sh}\left(\mathrm{t}\right)}\right]^{\:\mathrm{2}} \mathrm{dt} \\ $$ Answered by MathematicalUser2357 last updated on 28/Aug/25 $$\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}}{\mathrm{sinh}\:{t}}\right)^{\mathrm{2}}…

what-s-the-matter-yesterday-the-app-was-not-accessible-for-many-hours-now-it-seems-to-work-normally-again-but-actually-it-doesn-t-at-least-with-me-when-i-tip-view-older-to-scroll-through-the-ol

Question Number 224092 by mr W last updated on 19/Aug/25 $${what}'{s}\:{the}\:{matter}? \\ $$$${yesterday}\:{the}\:{app}\:{was}\:{not}\:{accessible} \\ $$$${for}\:{many}\:{hours}.\:{now}\:{it}\:{seems}\:{to} \\ $$$${work}\:{normally}\:{again}.\:{but}\:{actually} \\ $$$${it}\:{doesn}'{t},\:{at}\:{least}\:{with}\:{me}.\:{when} \\ $$$${i}\:{tip}\:“\boldsymbol{{view}}\:\boldsymbol{{older}}''\:{to}\:{scroll}\:{through} \\ $$$${the}\:{old}\:{posts},\:{the}\:{app}\:{crashes}\:{always} \\ $$$${at}\:{some}\:{point},\:{showing}\:{a}\:{message}…

Evaluate-2-0-sinxdx-with-h-12-correct-to-5-decimal-places-using-1-Trapezoidal-rule-2-Newton-Cotes-formula-for-n-4-3-Simpson-3-8-rule-then-find-the-truncation-error-in-each-case-

Question Number 224078 by OmoloyeMichael last updated on 18/Aug/25 $$\boldsymbol{{Evaluate}}\:\underset{\mathrm{0}} {\int}^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{{sinxdx}}\:\boldsymbol{{with}}\:\boldsymbol{{h}}=\frac{\boldsymbol{\pi}}{\mathrm{12}},\boldsymbol{{correct}}\:\boldsymbol{{to}} \\ $$$$\mathrm{5}\:\boldsymbol{{decimal}}\:\boldsymbol{{places}},\boldsymbol{{using}} \\ $$$$\left(\mathrm{1}\right)\boldsymbol{{Trapezoidal}}\:\boldsymbol{{rule}} \\ $$$$\left(\mathrm{2}\right)\boldsymbol{{Newton}}−\boldsymbol{{Cotes}}\:\boldsymbol{{formula}}\:\boldsymbol{{for}}\:\boldsymbol{{n}}=\mathrm{4} \\ $$$$\left(\mathrm{3}\right)\boldsymbol{{Simpson}}\:\mathrm{3}/\mathrm{8}\:−\boldsymbol{{rule}} \\ $$$$\boldsymbol{{then}}\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{truncation}}\:\boldsymbol{{error}}\:\boldsymbol{{in}}\:\boldsymbol{{each}}\:\boldsymbol{{case}}. \\ $$ Terms…

For-the-given-function-f-x-let-x-0-0-x-1-0-6-and-x-2-0-9-construct-the-lagrange-interpolating-polynomials-of-degree-1-at-most-1-2-at-most-2-to-approximate-f-0-45-if-a-f-x-cosx-b-f-x-

Question Number 224079 by OmoloyeMichael last updated on 18/Aug/25 $$\boldsymbol{{For}}\:\boldsymbol{{the}}\:\boldsymbol{{given}}\:\boldsymbol{{function}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right),\boldsymbol{{let}}\:\boldsymbol{{x}}_{\mathrm{0}} =\mathrm{0},\boldsymbol{{x}}_{\mathrm{1}} =\mathrm{0}.\mathrm{6} \\ $$$$\boldsymbol{{and}}\:\boldsymbol{{x}}_{\mathrm{2}} =\mathrm{0}.\mathrm{9}.\:\boldsymbol{{construct}}\:\boldsymbol{{the}}\:\boldsymbol{{lagrange}}\:\boldsymbol{{interpolating}} \\ $$$$\boldsymbol{{polynomials}}\:\boldsymbol{{of}}\:\boldsymbol{{degree}}.\:\left(\mathrm{1}\right)\:\boldsymbol{{at}}\:\boldsymbol{{most}}\:\mathrm{1}\:\left(\mathrm{2}\right)\boldsymbol{{at}}\:\boldsymbol{{most}}\:\mathrm{2} \\ $$$$\boldsymbol{{to}}\:\boldsymbol{{approximate}}\:\boldsymbol{{f}}\left(\mathrm{0}.\mathrm{45}\right)\:\boldsymbol{{if}}\: \\ $$$$\left(\boldsymbol{{a}}\right)\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{cosx}}\:\:\left(\boldsymbol{{b}}\right)\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\sqrt{\mathrm{1}+\boldsymbol{{x}}}\:\left(\boldsymbol{{c}}\right)\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{In}}\left(\mathrm{1}+\boldsymbol{{x}}\right) \\ $$$$\left(\boldsymbol{{d}}\right)\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{tanx}} \\ $$$$…

If-f-x-4x-3-3x-2-x-Then-solve-for-a-and-b-max-x-R-x-2-f-t-dt-a-where-x-b-

Question Number 224085 by MathematicalUser2357 last updated on 18/Aug/25 $$\mathrm{If}\:{f}\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} +{x},\:\mathrm{Then}\:\mathrm{solve}\:\mathrm{for}\:{a}\:\mathrm{and}\:{b}: \\ $$$$\underset{{x}\in\mathbb{R}} {\mathrm{max}}\left\{\int_{{x}} ^{\mathrm{2}} {f}\left({t}\right){dt}\right\}={a}\:\mathrm{where}\:{x}={b} \\ $$ Answered by Ghisom_ last updated on…

Use-choleski-s-method-to-solve-the-following-system-of-equation-4x-1-2x-2-2x-3-6-4x-1-3x-2-2x-3-8-2x-1-3x-2-x-3-5-

Question Number 224080 by OmoloyeMichael last updated on 18/Aug/25 $$\boldsymbol{{Use}}\:\boldsymbol{{choleski}}'\boldsymbol{{s}}\:\boldsymbol{{method}}\:\boldsymbol{{to}}\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{following}}\:\boldsymbol{{system}} \\ $$$$\boldsymbol{{of}}\:\boldsymbol{{equation}} \\ $$$$\mathrm{4}\boldsymbol{{x}}_{\mathrm{1}} −\mathrm{2}\boldsymbol{{x}}_{\mathrm{2}} +\mathrm{2}\boldsymbol{{x}}_{\mathrm{3}} =\mathrm{6} \\ $$$$\mathrm{4}\boldsymbol{{x}}_{\mathrm{1}} −\mathrm{3}\boldsymbol{{x}}_{\mathrm{2}} −\mathrm{2}\boldsymbol{{x}}_{\mathrm{3}} =−\mathrm{8} \\ $$$$\mathrm{2}\boldsymbol{{x}}_{\mathrm{1}} +\mathrm{3}\boldsymbol{{x}}_{\mathrm{2}}…